Skip to main content
Log in

Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The potential of using the Euler equations to numerically simulate the evolution of localized energy deposition zones interacting with a normal shock in quiescent air and in a supersonic channel flow is demonstrated. Simulation results are compared with available experimental data for an optical discharge in quiescent air and with results calculated for a supersonic flow using the Navier-Stokes equations with allowance for real gas effects. The possibility of predicting gasdynamic effects using the T- and q-models of energy deposition for perfect gas is justified. The variation of the gasdynamic structure and flow parameters near an energy deposition zone developing in a quiescent medium and interacting with a normal shock is analyzed in detail for different energy deposition powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Chernyi, in Proceedings of the 9th AIAA Unternational Space Planes and Hypersonic Systems and Technologies Conference and 3rd Weakly Ionized Gases Workshop, Norfolk, 1999, AIAA 99-4819.

  2. A. A. Zheltovodov, “Development of the Studies on Energy Deposition for Application to the Problems of Supersonic Aerodynamics,” RF Preprint No. 10-2002, ITAM SB RAS (Institute of Theoretical and Applied Mechanics of SB RAS, Novosibirsk, 2002).

    Google Scholar 

  3. V. M. Fomin, P. K. Tretyakov, and J.-P. Taran, Aerosp. Sci. Technol., No. 8, 411 (2004).

  4. P. Bletzinger, B. N. Ganguly, D. Van Wue, and A. Garscadden, J. Phys. D: Appl. Phys. 38, R33 (2005).

    Article  ADS  Google Scholar 

  5. S. B. Leonov and D. A. Yarantsev, Plasma Sources Sci. Technol. 16, 132 (2007).

    Article  ADS  Google Scholar 

  6. D. Knight, J. Propul. Power 24, 1153 (2008).

    Article  Google Scholar 

  7. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1980; Springer, Berlin, 1991).

    Google Scholar 

  8. N. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, and V. K. Fomin, Sov. Phys. Dokl. 26, 1066 (1981).

    ADS  Google Scholar 

  9. V. Yu. Borzov, V. M. Mikhailov, I. V. Rybka, N. P. Savishchenko, and A. S. Yur’ev, Inzh.-Fiz. Zh. 66, 515 (1994).

    Google Scholar 

  10. V. Svetsov, V. Popova, V. Rybakov, V. Artemiev, and S. Medveduk, Shock Waves, No. 7, 325 (1997).

  11. R. G. Adelgren, G. S. Elliott, D. D. Knight, A. A. Zheltovodov, and T. J. Beutner, in Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibition, Reno, Nevada, 2001, AIAA 2001-0885.

  12. H. Yan, R. Adelgren, M. Boguszko, G. Elliott, and D. Knight, AIAA J. 41, 1988 (2003).

    Article  ADS  Google Scholar 

  13. V. M. Fomin and V. N. Yakovlev, RF Preprint No. 2-2004, ITAM SB RAS (Institute of Theoretical and Applied Mechanics of SB RAS, Novosibirsk, 2004).

  14. N. Glumac, G. Elliot, and M. Bogushko, AIAA. J. 43, 1984 (2005).

    Article  ADS  Google Scholar 

  15. Z. Jiang, K. Takyama, K. P. B. Moosad, O. Onodera, and M. Sun, Shock Waves 8, 337 (1998).

    Article  ADS  Google Scholar 

  16. L. I. Sedov, Prikl. Mat. Mekh. 10, 241 (1946).

    Google Scholar 

  17. I. Dors, C. Parigger, and J. Lewis, in Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2000, AIAA 2000-0717.

  18. G. E. Teylor, Proc. R. Soc. London 201, 159 (1950).

    Article  ADS  Google Scholar 

  19. R. Kandala and G. Candler, AIAA J. 42, 2266 (2004).

    Article  ADS  Google Scholar 

  20. D. D. Knight, H. Yan, G. Candler, R. Kandala, A. A. Zheltovodov, and E. A. Pimonov, in Proceedings of the 15th International Conference on MHD Energy Conversion and the 6th International Workshop on Magneto-Plasma Aerodynamics, Moscow, 2005, Vol. 2, pp. 514–524.

  21. H. Yan, D. Knight, R. Kandala, and G. Candler, AIAA J. 45, 1270 (2007).

    Article  ADS  Google Scholar 

  22. H. Yan and D. Giatonde, AIAA J. 46, 1424 (2008).

    Article  ADS  Google Scholar 

  23. R. G. Adelgern, G. S. Elliott, D. D. Knight, A. A. Zheltovodov, and T. J. Beutner, AIAA J. 43, 256 (2005).

    Article  ADS  Google Scholar 

  24. P. Yu. Georgievskii and V. A. Levin, Teplofiz. Vys. Temp. 48, 74 (2010).

    Google Scholar 

  25. V. M. Fomin, P. K. Tret’yakov, and V. N. Zudov, Dokl. Phys. 55, 561 (2010).

    Article  ADS  Google Scholar 

  26. E. Schulein, A. A. Zheltovodov, E. A. Pimonov, and M. S. Loginov, Int. J. Aerospace Innov. 2, 165 (2010).

    Article  Google Scholar 

  27. S. M. Aul’chenko, V. P. Zamuraev, and A. P. Kalinina, Tech. Phys. 56, 1552 (2011).

    Article  Google Scholar 

  28. O. Azarova, D. Knight, and Yu. Kolesnichenko, Shock Waves 21, 439 (2011).

    Article  ADS  Google Scholar 

  29. B. Einfeldt, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 35, 294 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  30. B. van Leer, J. Comput. Phys. 32, 115 (1979).

    Google Scholar 

  31. H. Yan, D. Knight, R. Kandala, and G. Candler, in Proceedings of the 2nd AIAA Flow Control Conference, Portland, Oregon, 2004, AIAA 2004-2126.

  32. P. Yu. Georgievsky and V. A. Levin, in Proceedings of the International Conference on the Methods of Aerophysical Research, Novosibirsk, 1996, Part. 3, pp. 67–73.

  33. M. Bogushko and G. Elliott, Exp. Fluids 38, 33 (2005).

    Article  Google Scholar 

  34. A. G. Gaydon and I. R. Hurle, Shock Tube in High Temperature Chemical Physics (Chapman and Hall, London, 1963; Mir, Moscow, 1966).

    Google Scholar 

  35. S. M. Liang, J. L. Hsu, and J. S. Wang, AIAA J. 39, 1152 (2001).

    Article  ADS  Google Scholar 

  36. S. M. Liang, J. S. Wang, and H. Chen, Shock Waves 12, 59 (2002).

    Article  ADS  MATH  Google Scholar 

  37. R. G. Adelgren, “Localized Flow Control with Energy Deposition” Ph. D Theses, State University of New Jersey-New Brunswick, Rutgers, 2002.

    Google Scholar 

  38. A. F. Aleksandov, N. G. Vidyakin, V. A. Lakutin, M. G. Skvortsov, I. B. Timofeev, and V. A. Chernikov, Sov. Phys. Tech. Phys. 31, 468 (1986).

    Google Scholar 

  39. V. A. Andrushchenko and L. A. Chudov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 96 (1988).

  40. V. A. Voinovich, A. L. Zhmakin, and A. A. Fursenko, Sov. Phys. Tech. Phys. 33, 748 (1988).

    Google Scholar 

  41. P. Yu. Georgievskii and V. A. Levin, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 174 (1993).

  42. Mechanics in the USSR for the Last 50 Years, Vol. 2: Mechanics of Liquid and Gases, Ed. by L. I. Sedov, Ya. B. Zel’dovich, A. Yu. Ishlinskii, M. A. Lavrent’ev, G. K. Mikhailov, N. I. Muskhelishvili, and G. G. Chernyi (Nauka, Moscow, 1970), p. 310.

    Google Scholar 

  43. B. N. Gordeichik and I. V. Nemchinov, Available from VINITI, No. 2529-84 (Moscow, 1984).

  44. V. I. Artem’ev, V. I. Bergel’son, A. A. Kalmykov, I. V. Nemchinov, T. I. Orlova, V. A. Rybakov, V. A. Smirnov, and V. M. Khazins, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 158 (1988).

  45. P. Yu. Georgievskii, V. A. Levin, and O. G. Sutyrin, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 126 (2010).

  46. J. H. J. Niederhaus, J. A. Greenough, J. G. Oakley, D. Ranjan, M. H. Anderson, and R. A. Bonazza, J. Fluid. Mech. 594, 85 (2008).

    Article  ADS  MATH  Google Scholar 

  47. P. Yu. Georgievskii, V. A. Levin, and O. G. Sutyrin, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 146 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zheltovodov.

Additional information

Original Russian Text © A.A. Zheltovodov, E.A. Pimonov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 2, pp. 21–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheltovodov, A.A., Pimonov, E.A. Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock. Tech. Phys. 58, 170–184 (2013). https://doi.org/10.1134/S1063784213020278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213020278

Keywords

Navigation