Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2228–2232 | Cite as

The Effect of the Ion Assistance Energy on the Electrical Resistivity of Carbon Films Prepared by Pulsed Plasma Deposition in a Nitrogen Atmosphere

  • I. A. ZavidovskiiEmail author
  • O. A. Streletskii
  • O. Yu. Nishchak
  • A. A. Khaidarov
PHYSICS OF SURFACE AND THIN FILMS
  • 5 Downloads

Abstract

Thin carbon films prepared by pulsed plasma ion-assisted deposition of graphite in an atmosphere of a mixture of argon and nitrogen are studied. The results of characteristic electron energy loss spectroscopy and electron diffraction indicate the increase in the graphite component with increasing ion assistance energy. The use of ion assistance during the film deposition makes it possible to control their resistivity by changing it from 105 to 102 Ω cm.

Keywords:

ion-plasma deposition thin films amorphous carbon transmission electron microscopy characteristic electron energy loss spectroscopy resistivity 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    D. He, S. Zheng, J. Pu, G. Zhang, and L. Hu, Tribol. Int. 82, 20 (2015).  https://doi.org/10.1016/j.triboint.2014.09.017 CrossRefGoogle Scholar
  2. 2.
    R. Rincón, A. Hendaoui, J. de Matos, and M. Chaker, J. Appl. Phys. 119, 223303 (2016).  https://doi.org/10.1063/1.4953684 ADSCrossRefGoogle Scholar
  3. 3.
    T. T. Liao, T. F. Zhang, S. S. Li, Q. Y. Deng, B. J. Wu, Y. Z. Zhang, Y. J. Zhou, Y. B. Guo, Y. X. Leng, and N. Huang, Mater. Sci. Eng. C 69, 75 (2016).  https://doi.org/10.1016/j.msec.2016.07.064 CrossRefGoogle Scholar
  4. 4.
    R. Paul, S. N. Das, S. Dalui, R. N. Gayen, R. K. Roy, R. Bhar, and A. K. Pal, J. Phys. D 41, 055309 (2008).  https://doi.org/10.1088/0022-3727/41/5/055309 ADSCrossRefGoogle Scholar
  5. 5.
    A. Varma, V. Palshin, and E. I. Meletis, Surf. Coat. Technol. 148, 305 (2001).  https://doi.org/10.1016/s0257-8972(01)01350-0 CrossRefGoogle Scholar
  6. 6.
    A. Hu, I. Alkhesho, H. Zhou, and W. W. Duley, Diamond Relat. Mater. 16, 149 (2007).  https://doi.org/10.1016/j.diamond.2006.04.008 ADSCrossRefGoogle Scholar
  7. 7.
    A. Grill, V. Patel, and S. Cohen, Diamond Related Mater. 3, 281 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    H. Dimigen, H. Hübsch, and R. Memming, Appl. Phys. Lett. 50, 1056 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    M. Wang, K. Schmidt, and K. Reichelt, J. Mater. Res. 7, 6 (1992).Google Scholar
  10. 10.
    C. Bauer, H. Leiste, M. Stüber, S. Ulrich, and H. Holleck, Diamond Relat. Mater. 11, 1139 (2018).  https://doi.org/10.1016/s0925-9635(01)00714-2 ADSCrossRefGoogle Scholar
  11. 11.
    C. P. Klages and R. Memming, Mater. Sci. Forum 52–53, 609 (1989).Google Scholar
  12. 12.
    S. Liza, J. Hieda, H. Akasaka, Ohtake, N. Tsutsumi, Y. Nagai, and A. T. Hanawa, Sci. Technol. Adv. Mater. 18, 76 (2017).  https://doi.org/10.1080/14686996.2016.1262196 CrossRefGoogle Scholar
  13. 13.
    R. Dey, S. Dolai, S. Hussain, R. Bhar, and A. K. Pal, Diamond Relat. Mater. 82, 70 (2018).  https://doi.org/10.1016/j.diamond.2018.01.002 ADSCrossRefGoogle Scholar
  14. 14.
    J. Lanigan, H. M. Freeman, C. Wang, M. B. Ward, A. Morina, A. Neville, and R. Brydson, RSC Adv. 7, 43600 (2017).  https://doi.org/10.1039/c7ra08959g
  15. 15.
    L. Perini, C. Durante, M. Favaro, V. Perazzolo, S. Agnoli, O. Schneider, G. Granozzi, and A. Gennaro, ACS Appl. Mater. Interfaces 7, 1170 (2015).  https://doi.org/10.1021/am506916y CrossRefGoogle Scholar
  16. 16.
    W. Zhang, Y. Xia, J. Ju, L. Wang, Z. Fang, and M. Zhang, Solid State Commun. 126, 163 (2003).  https://doi.org/10.1016/s0038-1098(02)00673-7
  17. 17.
    B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, Diamond Relat. Mater. 7, 656 (1998).  https://doi.org/10.1016/s0925-9635(97)00296-3 ADSCrossRefGoogle Scholar
  18. 18.
    J. Liu, H. Wang, and M. Antonietti, Chem. Soc. Rev. 45, 2308 (2016).CrossRefGoogle Scholar
  19. 19.
    L. Jia, H. Wang, D. Dhawale, C. Anand, M. A. Wahab, Q. Ji, K. Arigab, and A. Vinuab, Chem. Commun. 50, 5976 (2014).  https://doi.org/10.1039/c4cc02042a CrossRefGoogle Scholar
  20. 20.
    E. Cutiongco, D. Li, and Y. Chung, J. Tribol. 118, 543 (1996).CrossRefGoogle Scholar
  21. 21.
    L. K. Cheah, X. Shi, J. R. Shi, E. J. Liu, and S. R. P. Silva, J. Non-Cryst. Solids 242, 40 (1998).  https://doi.org/10.1016/s0022-3093(98)00787-x ADSCrossRefGoogle Scholar
  22. 22.
    A. Stanishevsky, Thin Solid Films 398–399, 560 (2001).  https://doi.org/10.1016/s0040-6090(01)01318-9 ADSCrossRefGoogle Scholar
  23. 23.
    Q. Wang, C. Wang, Z. Wang, J. Zhang, and D. He, Appl. Phys. Lett. 91, 141902 (2007).  https://doi.org/10.1063/1.2794017 ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Voevodin, J. G. Jones, J. S. Zabinski, Z. Czigány, and L. Hultman, J. Appl. Phys. 92, 4980 (2002).  https://doi.org/10.1063/1.1509106 ADSCrossRefGoogle Scholar
  25. 25.
    J. Neidhardt, L. Hultman, and Z. Czigány, Carbon 42, 2729 (2004).  https://doi.org/10.1016/j.carbon.2004.06.011 CrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    J. Kulik, G. D. Lempert, E. Grossman, D. Marton, J. W. Rabalais, and Y. Lifshitz, Phys. Rev. B 52, 15812 (1995).  https://doi.org/10.1103/physrevb.52.15812 ADSCrossRefGoogle Scholar
  29. 29.
    A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge, and J. Robertson, Phys. Rev. B 62, 11089 (2000).  https://doi.org/10.1103/physrevb.62.11089 ADSCrossRefGoogle Scholar
  30. 30.
    D. L. Pappas, K. L. Saenger, J. Bruley, W. Krakow, J. J. Cuomo, T. Gu, and R. W. Collins, J. Appl. Phys. 71 (11), 5675 (1992).  https://doi.org/10.1063/1.350501 ADSCrossRefGoogle Scholar
  31. 31.
    D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).  https://doi.org/10.1111/j.1151-2916.1990.tb07576.x CrossRefGoogle Scholar
  32. 32.
    A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).  https://doi.org/10.1103/physrevb.1.1382 ADSCrossRefGoogle Scholar
  33. 33.
    R. A. Roy, J. J. Cuomo, and D. S. Yee, J. Vac. Sci. Technol. A 6, 1621 (1988).  https://doi.org/10.1116/1.575339 ADSCrossRefGoogle Scholar
  34. 34.
    J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman, Handbook of Ion Beam Processing Technology: Principles, Deposition, Film Modification and Synthesis (Noyes, Westwood, New Jersey, USA, 1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. A. Zavidovskii
    • 1
    Email author
  • O. A. Streletskii
    • 1
  • O. Yu. Nishchak
    • 1
  • A. A. Khaidarov
    • 1
  1. 1. Moscow State UniversityMoscowRussia

Personalised recommendations