Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2014–2018 | Cite as

Mobility of Charge Carriers in a Single Crystal and Nanoceramic of the Superionic Pb1 – xSnxF2 Conductor (x = 0.2)

  • N. I. SorokinEmail author
DIELECTRICS
  • 1 Downloads

Abstract

A crystallophysical model of ion transfer in the superionic Pb1 – xSnxF2 conductor with a fluorite (CaF2) structure is proposed. The concentration dependence of the ionic conductivity of Pb1 – xSnxF2 single crystals and poly- and nanocrystals is analyzed. The single-crystal form of the superionic conductor is characterized by the highest conductivity. The mobility and concentration of anionic charge carriers in a single crystal and ceramics of Pb1 – xSnxF2 (x = 0.2) is calculated on the basis of structural and electrophysical data. The mobility of carriers μmob = 2.5 × 10–6 cm2/s V (at 293 K) in a single crystal is seven times higher than in nanoceramic. The concentration of carriers nmob = 1.7 × 1021 and 3.6 × 1021 cm3 (4.5 and 9.5% of the total number of anions) for a single crystal and nanoceramic, respectively. The comparison of isostructural Pb0.8Sn0.2F2, Pb0.67Cd0.33F2, and Pb0.9Sc0.1F2.1 single crystals shows that anionic carriers have a maximum mobility in the β-PbF2 and SnF2 based solid solution.

Keywords:

superionic conductivity fluorides fluorite structure single crystals nanoceramic 

Notes

FUNDING

This work was supported by the Ministry of Science and Higher Education within the works on the state task for the Federal Research Center “Crystallography and Photonics” of the Shubnikov Institute of Crystallography of the Russian Academy of Sciences.

CONFLICT OF INTERESTS

The author declare that he has no conflicts of interest.

REFERENCES

  1. 1.
    C. K. Jorgensen, Top. Curr. Chem. 56, 1 (1975).CrossRefGoogle Scholar
  2. 2.
    N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Inorg. Mater. 33, 1 (1997).Google Scholar
  3. 3.
    L. N. Patro and K. Hariharan, Solid State Ionics 239, 41 (2013).CrossRefGoogle Scholar
  4. 4.
    M. A. Reddy and M. Fichtner, Fluoride-Ion Conductors, Ed. by W. C. West and J. Nanda (World Scientific, Singapore, 2016), p. 277.Google Scholar
  5. 5.
    P. P. Fedorov, V. K. Goncharuk, I. G. Maslennikova, I. A. Telin, and T. Yu. Glazunova, Russ. J. Inorg. Chem. 61, 239 (2016).CrossRefGoogle Scholar
  6. 6.
    C. Lucat, A. Rhandour, L. Cot, and J. M. Reau, Solid State Commun. 32, 167 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    S. Vilminot, G. Perez, W. Granier, and L. Cot, Solid State Ionics 2, 91 (1981).CrossRefGoogle Scholar
  8. 8.
    Y. Ito, T. Mukoyama, K. Ashio, K. Yamamoto, Y. Suga, S. Yoshikado, C. Julien, and T. Tanaka, Solid State Ionics 106, 291 (1998).CrossRefGoogle Scholar
  9. 9.
    S. Yoshikato, Y. Ito, and Y. M. Reau, Solid State Ionics 154–155, 503 (2002).CrossRefGoogle Scholar
  10. 10.
    M. Uno, M. Onitsuka, Y. Ito, and S. Yoshikado, Solid State Ionics 176, 2493 (2005).CrossRefGoogle Scholar
  11. 11.
    M. M. Ahmad, Y. Yamane, K. Yamada, and S. Tanaka, J. Phys. D 40, 6020 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M. M. Ahmad and K. Yamada, J. Chem. Phys. 127, 124507 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    M. M. Ahmad, J. Mater. Sci.: Mater. Electron. 25, 4398 (2014).Google Scholar
  14. 14.
    N. I. Sorokin, Phys. Solid State 57, 1352 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    N. I. Sorokin, Phys. Solid State 60, 714 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    R. W. Bonne and J. Schoonman, J. Electrochem. Soc. 124, 28 (1977).CrossRefGoogle Scholar
  17. 17.
    I. V. Murin, A. V. Glumov, and O. V. Glumov, Elektrokhimiya 15, 1119 (1979).Google Scholar
  18. 18.
    A. B. Lidiard, in Crystals with the Fluorite Structure, Ed. by W. Hayes (Clarendon, Oxford, 1974), p. 101.Google Scholar
  19. 19.
    R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    V. Trnovcova, P. P. Fedorov, M. Ozvoldova, I. I. Buchinskaya, and E. A. Zhurova, J. Optoelectron. Adv. Mater. 5, 627 (2003).Google Scholar
  21. 21.
    I. V. Murin and S. V. Chernov, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 168 (1982).Google Scholar
  22. 22.
    N. I. Sorokin, I. I. Buchinskaya, and B. P. Sobolev, Zh. Neorg. Khim. 37, 2653 (1992).Google Scholar
  23. 23.
    N. I. Sorokin, B. P. Sobolev, and M. Breiter, Phys. Solid State 44, 1579 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    I. Yu. Gotlib, I. V. Murin, I. V. Piotrovskaya, and E. N. Brodskaya, Inorg. Mater. 38, 975 (2002).Google Scholar
  25. 25.
    D. P. Almond, C. C. Hunter, and A. R. West, J. Mater. Sci. 19, 3236 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Federal Research Center Crystallography and Photonics, Shubnikov Institute of Crystallography, Russian Academy of SciencesMoscowRussia

Personalised recommendations