Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2034–2040 | Cite as

Correlation between the Fluorine Ion Conductivities of Sr1 – xRxF2 + x (CaF2 Type) and R1 – ySryF3 – y (LaF3 Type) Crystals in the SrF2–RF3 Systems (R = La–Nd)

  • N. I. SorokinEmail author
  • B. P. Sobolev
DIELECTRICS
  • 13 Downloads

Abstract

The “conductivity logarithm–composition” correlation logσdc(x) = ax + b has been revealed for the strongly nonstoichiometric fluorite Sr1 – xRxF2 + x (x is the RF3 molar fraction, 0.15 ≤ x ≤ 0.47) and tysonite R1 – ySryF3 – y (y is the SrF2 molar fraction, y = 1 – x, 0.85 ≤ x ≤ 0.97) phases in the SrF2–RF3 systems (R = La, Ce, Pr, Nd). The conductivity σdc of the eutectic 70LaF3 + 30SrF2 (mol %) composite fits well with the dependence logσdc(x) for the nonstoichiometric Sr1 – xLaxF2 + x and La1 – ySryF3 – y phases.

Keywords:

fluorides single crystals rare-earth elements ionic conductivity superionic conductors 

Notes

FUNDING

This work was supported by the Ministry of Science and Higher Education within the works on the state task for the Federal Research Center “Crystallography and Photonics” of the Shubnikov Institute of Crystallography of the Russian Academy of Sciences.

CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    B. P. Sobolev, The Rare Earth Trifluorides. Pt. 1. The High Temperature Chemistry of the Rare Earth Trifluorides (Inst. Kristallogr., Inst. d’Estudis Catalans, Moscow, Barcelona, Spain, 2000).Google Scholar
  2. 2.
    B. P. Sobolev, The Rare Earth Trifluorides. Pt. 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Inst. Kristallogr., Inst. d’Estudis Catalans, Moscow, Barcelona, Spain, 2001).Google Scholar
  3. 3.
    B. P. Sobolev, Crystallogr. Rep. 57, 434 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    B. P. Sobolev and N. I. Sorokin, Crystallogr. Rep. 59, 807 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    B. P. Sobolev, N. I. Sorokin, and N. B. Bolotina, in Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. Poeppelmeier (Elsevier, Amsterdam, 2016), p. 465.Google Scholar
  6. 6.
    P. P. Fedorov and B. P. Sobolev, Zh. Neorg. Khim. 24, 1038 (1979).Google Scholar
  7. 7.
    N. I. Sorokin, Russ. J. Electrochem. 42, 744 (2006).CrossRefGoogle Scholar
  8. 8.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52, 842 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 60, 959 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    M. S. Frant and J. W. Ross, Science (Washington, DC, U. S.) 154, 1553 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Potanin, Zh. Vseros. Khim. Ob-va im. D. I. Mendeleeva 45, 58 (2001).Google Scholar
  12. 12.
    J. W. Fergus, Sens. Actuators, B 42, 119 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Anji Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).CrossRefGoogle Scholar
  14. 14.
    F. Gschwind, G. Rodrigues-Garcia, D. J. S. Sandbeek. A. Gross, M. Weil, M. Fichtner, and N. Hormann, J. Fluorine Chem. 182, 76 (2016).CrossRefGoogle Scholar
  15. 15.
    N. S. Kurnakov, Introduction to Physicochemical Analysis (Akad. Nauk SSSR, Moscow, Leningrad, 1940) [in Russian].Google Scholar
  16. 16.
    L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, Sov. Phys. Crystallogr. 31, 145 (1986).Google Scholar
  17. 17.
    L. P. Otroshchenko, B. A. Aleksandrov, B. P. Sobolev, N. N. Bydanov, V. A. Sarin, and L. E. Fykin, in Proceedings of the 9th All-Union Conference on Physical Chemistry and Electrochemistry of Ionic Melts and Solid Electrolytes, Sverdlovsk, 1987, Vol. 3, p. 96.Google Scholar
  18. 18.
    E. A. Sulyanova, D. N. Karimov, S. N. Sulyanov, and B. P. Sobolev, Crystallogr. Rep. 59, 14 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39, 17 (1981).CrossRefGoogle Scholar
  20. 20.
    E. A. Krivandina, Z. I. Zhmurova, T. M. Glushkova, M. M. Firsova, A. P. Shtyrkova, and B. P. Sobolev, Crystallogr. Rep. 48, 878 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    U. Croatto and M. Bruno, Gazz. Chim. Ital. 78, 95 (1948).Google Scholar
  22. 22.
    J. M. Reau, A. Rhandour, S. F. Matar, and P. Hagenmuller, J. Solid State Chem. 55, 7 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    P. P. Fedorov, T. M. Turkina, B. P. Sobolev, E. Mariani, and M. Svantner, Solid State Ionics 6, 331 (1982).CrossRefGoogle Scholar
  24. 24.
    I. V. Murin, O. V. Glumov, and Yu. V. Amelin, Zh. Prikl. Khim. 53, 1474 (1980).Google Scholar
  25. 25.
    I. V. Murin, O. V. Glumov, I. G. Podkolzina, M. A. Petrova, and B. P. Sobolev, Zh. Prikl. Khim. 55, 300 (1982).Google Scholar
  26. 26.
    H. Geiger, G. Schon, and H. Strok, Solid State Ionics 15, 155 (1985).CrossRefGoogle Scholar
  27. 27.
    A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Sov. Phys. Solid State 25, 1007 (1983).Google Scholar
  28. 28.
    A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 31, 253 (1989).CrossRefGoogle Scholar
  29. 29.
    N. I. Sorokin and M. W. Breiter, Solid State Ionics 104, 325 (1997).CrossRefGoogle Scholar
  30. 30.
    N. I. Sorokin, D. N. Karimov, E. A. Sulyanova, Z. I. Zhmurova, and B. P. Sobolev, Crystallogr. Rep. 55, 662 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 39, 810 (1994).ADSGoogle Scholar
  32. 32.
    N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, Z. I. Zhmurova, and B. P. Sobolev, Crystallogr. Rep. 41, 292 (1996).ADSGoogle Scholar
  33. 33.
    N. I. Sorokin, Russ. J. Electrochem. 41, 896 (2005).CrossRefGoogle Scholar
  34. 34.
    N. I. Sorokin and B. P. Sobolev, Russ. J. Electrochem. 43, 398 (2007).CrossRefGoogle Scholar
  35. 35.
    N. I. Sorokin and B. P. Sobolev, Russ. J. Electrochem. 44, 1031 (2008).CrossRefGoogle Scholar
  36. 36.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 41, 490 (1996).ADSGoogle Scholar
  37. 37.
    N. I. Sorokin, Crystallogr. Rep. 38, 256 (1993).Google Scholar
  38. 38.
    N. I. Sorokin, Zh. Neorg. Khim. 40, 227 (1995).Google Scholar
  39. 39.
    N. I. Sorokin, Crystallogr. Rep. 45, 799 (2000).ADSCrossRefGoogle Scholar
  40. 40.
    S. V. Borisov and N. V. Podberezskaya, Stable Cationic Frameworks in Fluoride and Oxide Structures (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  41. 41.
    S. V. Chernov, W. Gunsser, and I. V. Murin, Solid State Ionics 47, 67 (1991).CrossRefGoogle Scholar
  42. 42.
    N. I. Sorokin, Sov. Phys. Crystallogr. 37, 270 (1992).Google Scholar
  43. 43.
    A. Duvel, J. Bednarcik, V. Sepelak, and P. Heitjans, J. Phys. Chem. C 118, 7117 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Federal Research Center Crystallography and Photonics, Shubnikov Institute of Crystallography, Russian Academy of SciencesMoscowRussia

Personalised recommendations