Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2218–2223 | Cite as

Excitons and Trions in Bilayer van der Waals Heterostructures

  • M. A. SeminaEmail author
LOW-DIMENSIONAL SYSTEMS
  • 40 Downloads

Abstract

Excitons and trions in bilayer structures based on transition metal dichalcogenides are theoretically studied. Expressions for the effective potential of interparticle interaction in such a system with allowance for a significant dielectric contrast in the heterostructure are obtained. Simple and physically justified variational functions for electron–hole complexes are proposed. A variational calculation of the exciton and trion binding energies as functions of the interlayer distance, taking into account the specific features of the screening of the Coulomb interaction, is performed. The accuracy of the variational approach is confirmed by direct numerical calculation of the exciton binding energy as a function of the interlayer distance.

Keywords:

spatially indirect exciton trion monolayers of transition metal dichalcogenides bilayer structures Rytova–Keldysh potential 

Notes

ACKNOWLEDGMENTS

The author is grateful to M.M. Glazov and A.V. Rodina for discussions and useful questions, which helped them improve the work.

FUNDING

This work was supported by the Russian Science Foundation (project no. 19-12-00273).

CONFLICT OF INTEREST

The author has no conflicts of interest related to the material presented in this paper.

REFERENCES

  1. 1.
    A. K. Geim, Science (Washington, DC, U. S.) 324 (5934), 1530 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, Science (Washington, DC, U. S.) 353, aac9439 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zolyomi, N. D. Drummond, and V. Fal’ko, 2D Mater. 2, 022001 (2015).Google Scholar
  4. 4.
    D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, et al., Nat. Commun. 3, 887 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, Taniguchi, K. Watanabe, H. Carrere, D. La-garde, et al., Phys. Rev. X 7, 021026 (2017).Google Scholar
  7. 7.
    A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    M. V. Durnev and M. M. Glazov, Phys. Usp. 61, 825 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    E. V. Calman, M. M. Fogler, L. V. Butov, S. Hu, A. Mi-shchenko, and A. K. Geim, Nat. Commun. 9, 1895 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    C. Jin, E. C. Regan, A. Yan, M. I. B. Utama, D. Wang, S. Zhao, Y. in, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, Nature (London, U.K.) (2019, in press).  https://doi.org/10.1038/s41586-019-0976-y
  12. 12.
    K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, Nature (London, U.K.) (2019, in press).  https://doi.org/10.1038/s41586-019-0957-1
  13. 13.
    K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. Quan, A. Singh, J. Embley, A. Zepeda, M. Campbell, T. Autry, T. Taniguchi, K. Watanabe, N. Lu, S. K. Banerjee, K. L. Silverman, S. Kim, E. Tutuc, L. Yang, A. H. MacDonald, and X. Li, Nature (London, U.K.) (2019, in press).  https://doi.org/10.1038/s41586-019-0975-z
  14. 14.
    I. C. Gerber, E. Courtade, S. Shree, C. Robert, T. Taniguchi, K. Watanabe, A. Balocchi, P. Renucci, D. Lagarde, X. Marie, and B. Urbaszek, Phys. Rev. B 99, 035443 (2019).ADSCrossRefGoogle Scholar
  15. 15.
    A. O. Slobodeniuk, L. Bala, M. Koperski, M. R. Molas, P. Kossacki, K. Nogajewski, M. Bartos, K. Watanabe, T. Taniguchi, and C. Faugeras, 2D Mater. 6, 025026 (2019).Google Scholar
  16. 16.
    C. Robert, M. A. Semina, F. Cadiz, M. Manca, E. Courtade, T. Taniguchi, K. Watanabe, H. Cai, S. Tongay, B. Lassagne, P. Renucci, T. Amand, X. Marie, M. M. Glazov, and B. Urbaszek, Phys. Rev. Mater. 2, 011001(R) (2018).Google Scholar
  17. 17.
    N. S. Rytova, Vestn. Mosk. Univ., Ser. Fiz. Astron. 3, 30 (1967).Google Scholar
  18. 18.
    L. I. Keldysh, JETP Lett. 29, 658 (1979).ADSGoogle Scholar
  19. 19.
    R. Y. Kezerashvili and S. M. Tsiklauri, Few-Body Syst. 58, 1 (2017).CrossRefGoogle Scholar
  20. 20.
    I. V. Bondarev, Mod. Phys. Lett. B 30, 1630006 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    I. V. Bondarev and M. R. Vladimirova, Phys. Rev. B 97, 165419 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    O. L. Berman and R. Y. Kezerashvili, Phys. Rev. B 96, 094502 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    M. N. Brunetti, O. L. Berman, and R. Y. Kezerashvili, J. Phys.: Condens. Matter 30, 225001 (2018).ADSGoogle Scholar
  24. 24.
    N. A. Asriyan, I. L. Kurbakov, A. K. Fedorov, and Y. E. Lozovik, arXiv:1811.08802 (2018).Google Scholar
  25. 25.
    M. M. Glazov and A. Chernikov, Phys. Status Solidi B 255, 1800216 (2018).ADSCrossRefGoogle Scholar
  26. 26.
    E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, Phys. Rev. B 96, 085302 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    R. A. Sergeev and R. A. Suris, Semiconductors 37, 1205 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    M. A. Semina and R. A. Suris, JETP Lett. 94, 574 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    R. D. Mota, V. D. Granados, A. Queijeiro, and J. Garcia, J. Phys. A 35, 2979 (2002).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R. A. Sergeev and R. A. Suris, Phys. Solid State 43, 746 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    M. Semina, R. Sergeev, and R. Suris, Phys. E 40, 1357 (2008).CrossRefGoogle Scholar
  32. 32.
    A. Imamoglu, private communication.Google Scholar
  33. 33.
    M. M. Glazov, M. A. Semina, C. Robert, B. Urbaszek, T. Amand, and X. Marie, arXiv:1904.02674 (2019).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations