Physics of the Solid State

, Volume 61, Issue 11, pp 2241–2248 | Cite as

Bistability of Multiwalled Carbon Nanotubes Arranged on Plane Substrates

  • A. V. SavinEmail author
  • O. I. Savina


Stationary states of multi-walled carbon nanotubes have been studied. The numerical simulation showed that nanotubes become bistable systems at rather large diameters. They can be in two stable states in spite of the interaction with substrates: in an open state with a hollow internal cavity and in a collapsed state. The interaction with a plane substrate leads to the nanotube flattening, making its transition to a collapsed state more energetically preferable (the stronger the interaction, the more preferable is the transition). It is shown that a change in the multilayer nanotube shape due to its interaction with the substrate or due to its collapse leads to a sharp increase in the number of its collective eigenmodes, in which all its layers take part. The energy profile of the transition is found between the steady states of the nanotube; the profile is a strongly asymmetric double-well potential with the first narrow minimum, which corresponds to the collapsed state and the second broad minimum, which corresponds to the nanotube open state.


multi-walled nanotube bistability nanotube collapse plane substrate double-well potential 



This work was supported by the Russian Scientific Foundation, project no. 16-13-10302. The computing resources were presented by the Interdepartamental Supercomputer Center of the Russian Academy of Sciences


The authors declare that they have no conflicts of interest.


  1. 1.
    L. V. Radushkevich and V. M. Luk’yanovich, Zh. Fiz. Khim. 26, 88 (1952).Google Scholar
  2. 2.
    S. Iijima, Nature (London, U.K.) 354, 568 (1991).CrossRefGoogle Scholar
  3. 3.
    A. V. Eletskii, Phys. Usp. 45, 369 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    N. S. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Nature (London, U.K.) 377, 135 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    G. Gao, T. Çağin, and W. A. Goddard, Nanotechnology 9, 184 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    J. Xiao, B. Liu, Y. Huang, J. Zuo, K.-C. Hwang, and M.-F. Yu, Nanotechnology 18, 395703 (2007).CrossRefGoogle Scholar
  7. 7.
    J. A. Baimova, Q. Fan, L. Zeng, Z. Wang, S. V. Dmitriev, X. Feng, and K. Zhou, J. Nanomater. 2015, 186231 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Hertel, R. E. Walkup, and P. Avouris, Phys. Rev. B 58, 13870 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    J. Xie, Q. Xue, H. Chen, D. Xia, C. Lv, and M. Ma, J. Phys. Chem. C 114, 2100 (2010).CrossRefGoogle Scholar
  10. 10.
    X. Yuan and Y. Wang, Nanotechnology 29, 075705 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    J. Kou, X. Zhou, Y. Fang, Y. Chen, H. Lu, H. Ye, F. Wu, and J. Fan, Appl. Phys. Lett. 102, 123902 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Umeno, Y. Yachi, M. Sato, and H. Shima, Phys. E (Amsterdam, Neth.) 106, 319 (2019).Google Scholar
  13. 13.
    T. Tang, A. Jagota, C.-Y. Hui, and N. J. Glassmaker, J. Appl. Phys. 97, 074310 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    J. Liu, Arch. Appl. Mech. 82, 767 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    R. Setton, Carbon 34, 69 (1996).CrossRefGoogle Scholar
  16. 16.
    A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
  17. 17.
    W. D. Luedtke and U. Landman, Phys. Rev. Lett. 82, 3835 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    J. Sforzini, L. Nemec, T. Denig, B. tadtmuller, T.‑L. Lee, C. Kumpf, S. Soubatch, U. Starke, P. Rinke, V. Blum, F. C. Bocquet, and F. S. Tautz, Phys. Rev. Lett. 114, 106804 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. Lyalin, A. Hussien, A. V. Solov’yov, and W. Greiner, Phys. Rev. B 79, 165403 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. E. Galashev and V. A. Polukhin, Phys. Solid State 55, 2368 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, -Micro Nano Lett. 13, 160 (2018).CrossRefGoogle Scholar
  22. 22.
    J. Lahiri, T. S. Miller, A. J. Ross, L. Adamska, I. I. Oleynik, and M. Batzill, New J. Phys. 13, 025001 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima, Surf. Sci. 374, 61 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    A. Dahal and M. Batzill, Nanoscale 6, 2548 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 92, 035412 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 57, 2348 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    H. Y. Peng, N. Wang, Y. F. Zheng, Y. Lifshitz, J. Kulik, R. Q. Zhang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 77, 2831 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    T. Chang and Z. Guo, Nano Lett. 10, 3490 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    A. V. Savin, G. P. Tsironis, and A. V. Zolotaryuk, Phys. Rev. E 56, 2457 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    G. Costantini and F. Marchesoni, Phys. Rev. Lett. 87, 114102 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Semenov Chemical Physics Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations