Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2200–2217 | Cite as

Effect of Annealing on Structural, Textural, Thermal, Magnetic, and Luminescence Properties of Calcium Fluoride Nanoparticles

  • V. G. Il’vesEmail author
  • S. Yu. Sokovnin
  • M. G. Zuev
  • M. A. Uimin
  • M. Rähn
  • J. Kozlova
  • V. Sammelselg
LOW-DIMENSIONAL SYSTEMS
  • 26 Downloads

Abstract

Mesoporous nanocrystalline CaF2 powder was produced by pulsed electron beam evaporation (PEBE) in vacuum. The specific surface area (SSA) of CaF2 nanopowder (NP) reached 88.7 m2/g. The effect of in-air thermal annealing in the temperature range of 200–900°C on the particle size, morphology, textural, thermal, magnetic, and luminescence properties of NPs is studied. A strong deviation from stoichiometry is observed in produced nanoparticles and a significant increase in the SSA after annealing at 200°C. The obtained CaF2 NP shows ferromagnetic (FM) behavior. The FM response appearance can be explained by the formation of structural and radiation defects. An analysis of pulsed cathodoluminescence (PCL) and magnetization curves of CaF2 NPs allows conclusions about their interrelation.

Keywords:

CaF2 nanoparticles pulsed electron evaporation 

Notes

ACKNOWLEDGMENTS

The authors are grateful to S.V. Pryanichnikov for the X‑ray fluorescence analysis, T.M. Demina for textural and DSC-TG analysis, A.V. Spirina for recording and discussion of the pulsed cathodoluminescence spectra, and E.G. Vovkotrub for Raman spectra measurements. X-ray fluorescence analysis was performed at the Ural-M Shared Service Center of the Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg.

FUNDING

This study performed within the State contract no. 0389-2015-0026 was supported by the Russian Foundation for Basic Research, project no. 18-08-00514. This study was supported by the Estonian Ministry of Education, projects IUT2-24 and IUT20-54, and the project Namur + Ministry of Science and Education of the Estonian Republic. Magnetic measurements were performed within the State contract, project “Magnet” no. AAAA-A18-118020290129-5.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    P. P. Fedorov, S. V. Kuznetsov, and V. V. Osiko, in Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. R. Poeppelmeier, Progress in Fluorine Science Series (Elsevier, Amsterdam, 2016), p. 7.Google Scholar
  2. 2.
    N. Sholina, P. Demina, D. Khochenkov, A. Generalova, A. Nechaev, and E. Khaydukov, EPJ Web Conf. 190, 26 (2018).CrossRefGoogle Scholar
  3. 3.
    J. Lellouche, A. Friedman, A. Gedanken, and E. Banin, Int. J. Nanomed. 7, 5611 (2012).Google Scholar
  4. 4.
    V. S. Kortov, Rad. Meas. 45, 512 (2012).CrossRefGoogle Scholar
  5. 5.
    S. V. Kuznetsov, O. A. Morozov, V. G. Gorieva, M. N. Mayakova, M. A. Marisov, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, A. S. Nizamutdinov, V. V. Semashko, and P. P. Fedorov, J. Fluorine Chem. 211, 70 (2018).CrossRefGoogle Scholar
  6. 6.
    X. Sun and Y. Li, Chem. Commun. 0, 1768 (2003).CrossRefGoogle Scholar
  7. 7.
    Z. Li, Y. Zhang, L. Huang, Y. Yang, Y. Zhao, G. El-Banna, and G. Han, Theranostics 6, 2380 (2016).CrossRefGoogle Scholar
  8. 8.
    M. S. Akchurin, T. T. Basiev, A. A. Demidenko, M. E. Doroshenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, S. V. Kuznetsov, M. A. Krutov, I. A. Mironov, V. V. Osiko, and P. A. Popov, Opt. Mater. 35, 444 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian, and J. Lin, J. Nanotechnol. 19, 075603 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    C. Pandurangappa, B. N. Lakshminarasappa, and B. M. Nagabhushana, J. Alloys Compd. 489, 592 (2010).CrossRefGoogle Scholar
  11. 11.
    P. T. Patil, A. Dimitrov, J. Radnik, and E. Kemnitz, J. Mater. Chem. 18, 1632 (2008).CrossRefGoogle Scholar
  12. 12.
    A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    A. Safronikhin, H. Ehrlich, and G. Lisichkin, J. Alloys Compd. 694, 1182 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Sun and L. C. Chow, Dent. Mater. 24, 111 (2008).CrossRefGoogle Scholar
  15. 15.
    L. Ma, L. L. Yang, Y. G. Wang, X. P. Zhou, and X. Y. Xu, Ceram. Int. 39, 5973 (2013).CrossRefGoogle Scholar
  16. 16.
    R. Witter, M. Roming, C. Feldmann, and A. S. Ulrich, J. Colloid Interface Sci. 390, 250 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    M. Dreger, G. Scholz, and E. Kemnitz, Solid State Sci. 14, 528 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    R. N. Grass and W. J. Stark, Chem. Commun. 0, 1767 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Astruc, C. Cochon, S. Dessources, S. Célérier, and S. Brunet, Appl. Catal. A 453, 20 (2013).CrossRefGoogle Scholar
  20. 20.
    V. V. Osipov, V. V. Lisenkov, V. V. Platonov, and E. V. Tikhonov, Quantum Electron. 48, 235 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarina, and S. Gross, RSC Adv. 5, 16302 (2015).Google Scholar
  22. 22.
    H. Kim and A. H. King, J. Mater. Res. 22, 2012 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    R. F. C. Farrow, P. W. Sullivan, G. M. Williams, G. R. Jones, and D. C. Cameron, J. Vac. Sci. Technol. 19, 415 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    A. de Bonis, A. Santagata, A. Galasso, M. Sansone, and R. Teghil, Appl. Surf. Sci. 302, 145 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. Klust, R. Kayser, and J. Wollschlager, Phys. Rev. B 62, 2158 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    M. Ylilammi and T. Rantaaho, J. Electrochem. Soc. 141, 1278 (1994).CrossRefGoogle Scholar
  27. 27.
    A. V. Blednov, O. Y. Gorbenko, S. V. Samoilenkov, V. A. Amelichev, V. A. Lebedev, K. S. Napolskii, and A. R. Kaul, Chem. Mater. 22, 175 (2010).CrossRefGoogle Scholar
  28. 28.
    H. Wang, R. Liu, K. Chen, X. Shi, and Z. Xu, Thin Solid Films 519, 6438 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    P. D. Belsare, C. P. Joshi, S. V. Moharil, S. K. Omanwar, P. L. Muthal, and S. M. Dhopte, Opt. Mater. 31, 668 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    S. Yu. Sokovnin, V. G. Il’ves, M. G. Zuev, and M. A. Uimin, J. Phys.: Conf. Ser. 1115, 032092 (2018).Google Scholar
  32. 32.
    A. Lushchik, C. Lushchik, E. Vasil’chenko, and A. I. Po-pov, Low Temp. Phys. 44, 269 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    A. E. Angervaks, A. V. Veniaminov, M. V. Stolyarchuk, V. E. Vasilev, I. Kudryavtseva, P. P. Fedorov, and A. I. Ryskin, J. Opt. Soc. Am. B 35, 1288 (2018).ADSCrossRefGoogle Scholar
  34. 34.
    A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, Opt. Spectrosc. 110, 660 (2011).Google Scholar
  35. 35.
    A. I. Ryskin, N. T. Bagraev, A. Lushchik, E. Shablonin, I. Kudryavtseva, and A. E. Angervaks, Solid State Ionics 323, 136 (2018).CrossRefGoogle Scholar
  36. 36.
    A. I. Ryskin, P. P. Fedorov, N. T. Bagraev, A. Lushchik, A. E. Angervaks, and I. Kudryavtseva, J. Fluorine Chem. 200, 109 (2017).CrossRefGoogle Scholar
  37. 37.
    R. Assylbayev, A. Lushchik, Ch. Lushchik, I. Kudryavtseva, E. Shablonin, E. Vasil’chenko, A. Akilbekov, and M. Zdorovets, Opt. Mater. 75, 196 (2018).ADSCrossRefGoogle Scholar
  38. 38.
    C. S. Bezerran and M. E. G. Valerio, Phys. B (Amsterdam, Neth.) 501, 106 (2016).Google Scholar
  39. 39.
    S. V. Kuznetsov, O. A. Morozov, V. G. Gorieva, M. N. Mayakova, M. A. Marisov, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, A. S. Nizamutdinov, V. V. Semashko, and P. P. Fedorov, J. Fluorine Chem. 211, 70 (2018).CrossRefGoogle Scholar
  40. 40.
    M. Straßer, J. H. X. Schrauth, S. Dembski, D. Haddad, B. Ahrens, S. Schweizer, B. Christ, A. Cubukova, M. Metzger, H. Walles, P. M. Jakob, and G. Sext, Beilstein J. Nanotech. 8, 1484 (2017).Google Scholar
  41. 41.
    N. Kumar, Master’s Thesis (Jawaharlal Nehru Centre for Adv. Sci. Res., A Deemed Univ., Bangalore, India, 2010).Google Scholar
  42. 42.
    S. Yu. Sokovnin and V. G. Il’ves, Ferroelectrics 436, 101 (2012).CrossRefGoogle Scholar
  43. 43.
    S. Y. Sokovnin, V. G. Il’ves, and M. G. Zuev, in Engineering of Nanobiomaterials: Applications of Nanobiomaterials, Ed. by A. M. Grumezesab (Elsevier, Amsterdam, 2016), Vol. 2, p. 29.Google Scholar
  44. 44.
    C. G. Mikhailov, V. V. Osipov, and V. I. Solomonov, Prib. Tekh. Eksp. 44, 164 (2001).Google Scholar
  45. 45.
    A. Smakula, Phys. Rev. 77, 408 (1949).ADSCrossRefGoogle Scholar
  46. 46.
    W. Bontinck, Physica (Amsterdam, Neth.) 24, 639 (1958).Google Scholar
  47. 47.
    M. Izerrouken, L. Guerbous, and A. Meftah, Nucl. Instrum. Methods Phys. Res., Sect. A 621, 68 (2010).Google Scholar
  48. 48.
    I. Nicoara, M. Stef, D. Vizman, and C. D. Negut, Radiat. Phys. Chem. 153, 70 (2018).ADSCrossRefGoogle Scholar
  49. 49.
    M. Izerrouken, A. Meftah, and M. Nekkab, J. Lumin. 127, 696 (2007).CrossRefGoogle Scholar
  50. 50.
    F. K. Fong and P. N. Yocom, J. Chem. Phys. 41, 1383 (1964).ADSCrossRefGoogle Scholar
  51. 51.
    W. J. Scouler and A. Smakula, Phys. Rev. 120, 1154 (1960).ADSCrossRefGoogle Scholar
  52. 52.
    V. Ausin and J. L. Alvarez Rivas, Phys. Rev. B 9, 775 (1974).ADSCrossRefGoogle Scholar
  53. 53.
    N. O. Dantas, S. Watanabe, and J. F. D. Chubaci, Nucl. Instrum. Methods Phys. Res., Sect. B 116, 269 (1996).Google Scholar
  54. 54.
    C. Florea, M. Zamfires, F. Jipa, and A. Velea, J. Intense Pulsed Laser Appl. Adv. Phys. 1, 1 (2011).Google Scholar
  55. 55.
    R. Assylbayev, A. Akilbekov, A. Dauletbekova, A. Lu-shchik, E. Shablonin, and E. Vasil’chenko, Rad. Meas. 90, 18 (2016).CrossRefGoogle Scholar
  56. 56.
    S. L. Baldochi and I. M. Ranieri, Acta Phys. Polon. A 124, 286 (2013).CrossRefGoogle Scholar
  57. 57.
    S. D. McLaughlan and H. W. Evans, Cryst. Phys. Status Solidi 27, 695 (1968).ADSCrossRefGoogle Scholar
  58. 58.
    E. S. Bochkareva, A. I. Sidorov, U. V. Yurina, and O. A. Podsvirov, Nucl. Instrum. Methods Phys. Res., Sect. B 403, 1 (2017).Google Scholar
  59. 59.
    AEROSIL-Fumed Silica Technical Overview. https://www.aerosil.com/sites/lists/RE/DocumentsSI/Technical-Overview-AEROSIL-Fumed-Silica-EN.pdf.Google Scholar
  60. 60.
    C. Yu. Sokovnin, V. G. Il’ves, M. G. Zuev, and M. A. Uimin, Tech. Phys. Lett. 44, 765 (2018).ADSCrossRefGoogle Scholar
  61. 61.
    A. Astruc, C. Cochon, S. Dessources, S. C’el’erier, and S. Brunet, Appl. Catal. A 453, 20 (2013).CrossRefGoogle Scholar
  62. 62.
    S. Y. Arkhipenko, A. A. Fedorova, I. V. Morozov, and A. S. Shaporev, Mendeleev Commun. 22, 25 (2012).CrossRefGoogle Scholar
  63. 63.
    T. Yu. Glazunova, A. I. Boltalin, and P. P. Fedorov, Russ. J. Inorg. Chem. 51, 983 (2006).CrossRefGoogle Scholar
  64. 64.
    H. Kim and A. H. King, J. Mater. Res. 22, 2012 (2007).ADSCrossRefGoogle Scholar
  65. 65.
    I. G. Ryss, The Chemistry of Fluorine and Its Inorganic Compounds (Goskhimizdat, Moscow, 1966) [in Russian].Google Scholar
  66. 66.
    L. R. Batsanova and N. V. Podberezskaya, Zh. Neorg. Khim. 11, 987 (1966).Google Scholar
  67. 67.
    R. Bennewitz, C. Günther, M. Reichling, E. Matthias, S. Vijayalakshmi, A. V. Barnes, and N. H. Tolk, Appl. Phys. Lett. 66, 320 (1995).ADSCrossRefGoogle Scholar
  68. 68.
    L. P. Cramer, B. E. Schubert, P. S. Petite, and S. C. Langford, J. Appl. Phys. 97, 074307 (2005).ADSCrossRefGoogle Scholar
  69. 69.
    M. Huisinga, N. Bouchaala, R. Bennewitz, E. A. Kotomin, M. Reichling, V. N. Kuzovkov, and W. von Niessen, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 79 (1998).Google Scholar
  70. 70.
    L. P. Cramer, S. C. Langford, and J. T. Dickinson, J. Appl. Phys. 99, 054305 (2006).ADSCrossRefGoogle Scholar
  71. 71.
    A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 75, 2340 (1971).CrossRefGoogle Scholar
  72. 72.
    P. E. Halstead and A. E. Moore, J. Chem. Soc. 0, 3873 (1957).CrossRefGoogle Scholar
  73. 73.
    T. S. Minakova and I. A. Ekimova, Alkaline Earth Metal and Magnesium Fluorides and Oxides, Surface Properties (Tomsk. Gos. Univ., Tomsk, 2014) [in Russian].Google Scholar
  74. 74.
    K. V. Balen, Cem. Concr. Res. 35, 647 (2005).CrossRefGoogle Scholar
  75. 75.
    V. Nikulshina, M. E. G’alvez, and A. Steinfeld, Chem. Eng. J. 129, 75 (2007).CrossRefGoogle Scholar
  76. 76.
    Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh, J. Ind. Eng. Chem. 20, 113 (2014).CrossRefGoogle Scholar
  77. 77.
    F. Beuneu, C. Florea, and P. Vajda, Radiat. Eff. Defects Solids 136, 175 (1995).CrossRefGoogle Scholar
  78. 78.
    A. Lust, Dissertation (Inst. Chem. Phys., Univ. Tartu, Estonia, 2007), p. 43.Google Scholar
  79. 79.
    S. V. Kuznetsov, V. Yu. Proydakova, O. A. Morozov, V. G. Gorieva, M. A. Marisov, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, A. S. Nizamutdinov, V. V. Semashko, and P. P. Fedorov, Nanosyst.: Phys. Chem. Math. 9, 663 (2018).Google Scholar
  80. 80.
    N. D. Alharbi, J. Nanomater. 2015, 136957 (2015).CrossRefGoogle Scholar
  81. 81.
    N. Salah, N. D. Alharbi, S. S. Habib, and S. P. Lochab, J. Nanomater. 2015, 136402 (2015).CrossRefGoogle Scholar
  82. 82.
    F. Somma, R. M. Montereali, M. A. Vincenti, S. Polosan, and M. Secu, Phys. Proc. 2, 211 (2009).ADSCrossRefGoogle Scholar
  83. 83.
    S. Rix, U. Natura, F. Loske, M. Letz, C. Felser, and M. Reichling, Appl. Phys. Lett. 99, 261909 (2011).ADSCrossRefGoogle Scholar
  84. 84.
    V. M. Orera and E. Alcalá, Phys. Status Solidi A 38, 621 (1976).ADSCrossRefGoogle Scholar
  85. 85.
    T. Aokia, L. A. J. Garvie, and P. Rezc, Ultramicroscopy 153, 40 (2015).CrossRefGoogle Scholar
  86. 86.
    S. Yu. Sokovnin, V. G. Il’ves, M. G. Zuev, and M. A. Uimin, J. Phys.: Conf. Ser. 1115, 032092 (2018).Google Scholar
  87. 87.
    T. J. Glynn, J. Lumin. 48–49, 783 (1991).CrossRefGoogle Scholar
  88. 88.
    O. T. Antonyak, V. V. Vistovskyy, A. V. Zhyshkovych, and I. M. Kravchuk, J. Lumin. 67, 249 (2015).CrossRefGoogle Scholar
  89. 89.
    P. V. Figura, A. I. Nepomnyashchikh, and E. A. Radzhabov, Opt. Spectrosc. 65, 553 (1988).ADSGoogle Scholar
  90. 90.
    U. Kempe, in Proceedings of the RMS DPI Fedorov Session 2006, St. Petersburg, Russia (2006), 2006-1-58-1, p. 162. http://www.minsoc.ru/FilesBase/2006-1-58-1.pdf.Google Scholar
  91. 91.
    R. S. W. Braithwaite, W. T. Flowers, R. N. Haszeldine, and M. Russell, Min. Mag. 39, 401 (1973).CrossRefGoogle Scholar
  92. 92.
    R. Thaoklua, J. Janjaroen, K. Tedsree, and Chiang Mai, J. Sci. 45, 973 (2018).Google Scholar
  93. 93.
    H. Petitjean, C. Chizallet, J. M. Krafft, M. Che, H. Lauron-Pernot, and G. Costentin, Phys. Chem. Chem. Phys. 12, 14740 (2010).CrossRefGoogle Scholar
  94. 94.
    O. Nakhaei, N. Shahtahmassebi, M. Rezaeeroknabadi, and M. M. B. Mohagheghi, Sci. Iran. 19, 1979 (2012).CrossRefGoogle Scholar
  95. 95.
    R. Rao and H. N. Bose, Physica (Amsterdam, Neth.) 52, 371 (1971).Google Scholar
  96. 96.
    M. Topaksu, V. Correcher, and J. Garcia-Guinea, Rad. Phys. Chem. 119, 151 (2016).ADSCrossRefGoogle Scholar
  97. 97.
    T. Kogure, K. Saiki, M. Konno, and T. Kamino, Mater. Res. Soc. Proc. 504, 183 (1996).CrossRefGoogle Scholar
  98. 98.
    V. Denks, T. Savikhina, and V. Nagirnyi, Appl. Surf. Sci. 158, 301 (2000).ADSCrossRefGoogle Scholar
  99. 99.
    E. P. Chinkov and V. F. Shtan’ko, Phys. Solid State 40, 1117 (1998).ADSCrossRefGoogle Scholar
  100. 100.
    V. Denks, A. Maaroos, V. Nagirnyi, T. Savikhina, and V. Vassiltsenko, J. Phys.: Condens. Matter 11, 3115 (1999).ADSGoogle Scholar
  101. 101.
    J. P. Russell, Proc. Phys. Soc. 85, 194 (1965).ADSCrossRefGoogle Scholar
  102. 102.
    V. G. Mazurenko and M. G. Zuev, Sov. Phys. Solid State 34, 1489 (1992).Google Scholar
  103. 103.
    I. Alencar, J. Ruiz-Fuertes, K. Schwartz, C. Trautmann, L. Bayarjargal, E. Haussühl, and B. Winklere, J. Raman Spectrosc. 47, 978 (2016).ADSCrossRefGoogle Scholar
  104. 104.
    J. M. D. Coey, Solid State Sci. 7, 660 (2005).ADSCrossRefGoogle Scholar
  105. 105.
    K. Ackland and J. M. D. Coey, Phys. Rep. 746, 39 (2018).CrossRefGoogle Scholar
  106. 106.
    R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S. C. Sharma, Y. T. Xing, and E. B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).ADSCrossRefGoogle Scholar
  107. 107.
    K. Fabian, V. P. Shcherbakov, and S. A. McEnroe, Geochem. Geophys. Geosyst. 14, 947 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. G. Il’ves
    • 1
    Email author
  • S. Yu. Sokovnin
    • 1
    • 2
  • M. G. Zuev
    • 2
    • 3
  • M. A. Uimin
    • 2
    • 4
  • M. Rähn
    • 5
  • J. Kozlova
    • 5
  • V. Sammelselg
    • 5
    • 6
  1. 1.Institute of Electrophysics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University Named after the first President of Russia B.N. YeltsinYekaterinburgRussia
  3. 3.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  4. 4.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  5. 5.Institute of Physics, University of TartuTartuEstonia
  6. 6.Institute of Chemistry, University of TartuTartuEstonia

Personalised recommendations