Physics of the Solid State

, Volume 61, Issue 11, pp 1969–1978 | Cite as

Investigation on Structural, Electronic, and Thermoelectric Properties of Half-Heusler Compounds TiXSb (X = Si, Ge) under Pressure Based on Density Functional Theory (DFT)

  • A. Fazeli Kisomi
  • B. Nedaee-ShakarabEmail author
  • A. Boochani
  • H. Akbari
  • S. J. Mousavi


Based on density functional theory, structural, electronic, and thermoelectric properties of TiXSb (X = Si, Ge) at pressures of 0, 5, 10, and 15 GPa have been investigated. Structural properties at 0 GPa are in accord with other theoretical and experimental works. In electronic properties at 0 GPa, Ti-d2 orbitals have main contributions near the Fermi energy in valence band and in conduction band. According to our calculations, as shown in diagrams of electronic density of states at different pressures, peaks in the valence band move to more negative energies when the pressure increases. However, in the conduction band, they move to more positive energies. This occurs as a result of decreasing stability of the system due to increase in pressure. In this study, we also calculated the thermoelectric properties such as Seebeck coefficient, thermal conductivity divided by relaxation time, electrical conductivity divided by relaxation time, and figure of merit, at pressures of 0, 5, 10, and 15 GPa, in the temperature range of 100–900 K (contribution of phononic thermal conductivity was ignored as low).


thermoelectric properties half-Heusler compounds density functional theory electronic properties 


  1. 1.
    F. Heusler, Verh. Dtsch. Phys. Ges. 5, 219 (1903).Google Scholar
  2. 2.
    K. H. J. Buschow and P. van Engen, J. Magn. Magn. Mater 25, 90 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    A. Boochani, H. Khosravi, J. Khodadadi, S. Solaymani, M. M. Sarmazdeh, R. Taghavi-Mendi, and S. M. Elahi, Commun. Theor. Phys. 63, 641 (2015).CrossRefGoogle Scholar
  4. 4.
    R. Bentata, S. Bentata, B. Bouadjemi, T. Lantri, and D. Chenine, Chin. J. Phys. 59, 28 (2019).CrossRefGoogle Scholar
  5. 5.
    A. Anjami, A. Boochani, S. M. Elahi, and H. Akbari, Results Phys. 7, 3522 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    D. P. Rai, Sandeep, A. Shankar, R. Khenata, A. H. Reshak, C. E. Ekuma, R. K. Thapa, and S.-H. Ke, AIP Adv. 7, 045118 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    B. A. Cook, J. L. Harringa, Z. S. Tan, and W. A. Jesser, in Proceedings of the ICT'96, 15th International Conference on Thermoelectrics (1996), p. 122, IEEE Catalog No. 96TH8169.Google Scholar
  8. 8.
    Ch. Kloc, K. Fess, W. Kaefer, K. Riazi-Nejad, and E. Bucher, in Proceedings of the ICT' 96 (1996), p. 155.Google Scholar
  9. 9.
    E. Lendvay, Acta Phys. Acad. Sci. Hung. 51, 353 (1981).CrossRefGoogle Scholar
  10. 10.
    D. P. Rai, A. Shankar, Sandeep, M. P. Ghimire, R. Khenata, and R. K. Thapa, RSC Adv. 6, 13358 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Parker, A. F. May, H. Wang, M. A. McGuire, B. C. Sales, and D. J. Singh, Phys. Rev. B 87, 045205 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).CrossRefGoogle Scholar
  14. 14.
    M. K. Yadav and B. Sanyal, Mater. Res. Express 1, 015708 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    T. M. Tritt and M. A. Subramanian, Mater. Res. Bull. 31, 188 (2006).CrossRefGoogle Scholar
  16. 16.
    C. Sevik and T. Çağın, J. Appl. Phys. 109, 123712 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    D. M. Rowe, CRC Handbook of Thermoelectrics (CRC, New York, 1995).CrossRefGoogle Scholar
  18. 18.
    P. K. Rawat, B. Paul, and P. Banerji, Nanotechnology 24, 215401 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    R. Lam and A. Mar, Acta Crystallogr., Sect. E 65, i68 (2009).CrossRefGoogle Scholar
  20. 20.
    E. Dashjav and H. Kleinke, Z. Anorg. Allgem. Chem. 628, 2176 (2002).Google Scholar
  21. 21.
    E. Deligoz, U. F. Ozyar, and H. B. Ozisik, Philos. Mag. 96, 1712 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    H. Joshi, D. P. Rai, K. Verma, K. Bhamu, and R. Thapa, J. Alloys Compd. 726, 1155 (2017).CrossRefGoogle Scholar
  23. 23.
    U. F. Ozyar, E. Deligoz, and K. Colakoglu, Solid State Sci. 40, 92 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, Phys. Rev. B 68, 085201 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    P. Blaha, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria, 2008).Google Scholar
  27. 27.
    J. Perdew, K. P. Burke, and M. Ernzerhoff, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    G. Mahan, B. Sales, and J. Sharp, Phys. Today 50, 42 (1997).CrossRefGoogle Scholar
  29. 29.
    F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).ADSCrossRefGoogle Scholar
  30. 30.
    R. A. D. Groot, F. M. Mueller, P. G. V. Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    L. U. Peng-Xian and Q. U. Ling-Bo, Chin. Phys. Lett. 30, 017101 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    M. K. Yadav and B. Sanyal, J. Alloys Compd. 622, 388 (2015).CrossRefGoogle Scholar
  33. 33.
    H. Joshi, D. P. Rai, E. Deligoz, H. B. Ozisikand, and R. K. Thapa, Mater. Res. Express. 4, 105506 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Fazeli Kisomi
    • 1
  • B. Nedaee-Shakarab
    • 1
    Email author
  • A. Boochani
    • 2
  • H. Akbari
    • 1
  • S. J. Mousavi
    • 3
  1. 1.Department of Physics, Ardabil Branch, Islamic Azad UniversityArdabilIran
  2. 2.Department of Physics, Kermanshah Branch, Islamic Azad UniversityKermanshahIran
  3. 3.Department of Physics, Rasht Branch, Islamic Azad UniversityRashtIran

Personalised recommendations