Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 1993–1998 | Cite as

Electronic Structure of Molybdenum Oxidized in Air

  • P. A. Dement’ev
  • E. V. Ivanova
  • M. N. LapushkinEmail author
  • D. A. Smirnov
  • S. N. Timoshnev
SEMICONDUCTORS

Abstract

The electronic structure of a clean molybdenum surface oxidized in air and upon sodium Na adsorption at submonolayer coating have been studied by photoelectron spectroscopy in situ in an ultrahigh vacuum. The photoemission spectra from the valence band and O 1s, O 2s, Mo 4s, and Na 2p core levels are studied at the synchrotron excitation in the photon energy range 80–600 eV. The spectrum of oxygen core levels related to the substitution of sodium atoms for hydrogen atoms in the hydroxyl group is found to be changed. The surface topography and the cathodoluminescence of the molybdenum oxide has been studied.

Keywords:

molybdenum oxide photoemission AFM cathodoluminescence 

Notes

ACKNOWLEDGMENTS

The authors are grateful to the Helmholtz-Zentrum Berlin for the possibility of using synchrotron radiation and to D.O. Kuleshov for the discussion of the results.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    E. Ya. Zandberg, Tech. Phys. 40, 865 (1995).Google Scholar
  2. 2.
    E. Ya. Zandberg, A. G. Kamenev, V. I. Paleev, and U. Kh. Rasulev, Zh. Anal. Khim. 35, 1188 (1980).Google Scholar
  3. 3.
    I. A. Burakov, E. V. Krylov, A. L. Makasei, E. G. Nazarov, V. V. Pervukhin, and U. Kh. Rasulev, Sov. Tech. Phys. Lett. 17, 446 (1991).Google Scholar
  4. 4.
    V. I. Kapustin and A. P. Korzhavyi, Ross. Tekhnol. 4, 3 (2016).Google Scholar
  5. 5.
    V. N. Ageev and Yu. A. Kuznetsov, Phys. Solid State 40, 707 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    I. A. de Castro, R. S. Datta, J. Z. Ou, S. Sriram, T. Daeneke, and K. Kalantar-zadeh, Adv. Mater. 29, 1701619 (2017).CrossRefGoogle Scholar
  7. 7.
    A. D. Sayede, T. Amriou, M. Pernisek, B. Khelifa, and C. Mathieu, Chem. Phys. 316, 72 (2005).CrossRefGoogle Scholar
  8. 8.
    D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, and D. S. L. Law, J. Phys. Chem. C 114, 4636 (2010).CrossRefGoogle Scholar
  9. 9.
    R. Tokarz-Sobieraj, K. Hermann, M. Witko, G. Mestl, and R. Schlögl, Surf. Sci. 489, 107 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    Q. Qu, W. B. Zhang, K. Huang, and H. M. Chen, Comput. Mater. Sci. 130, 242 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Zh. Wang, M. Yang, D. C. Qi, S. Chen, W. Chen, A. T. S. Wee, and X. Y. Gao, J. Chem. Phys. 134, 034706 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, and F. Nüesch, Sci. Rep. 7, 40761 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    P. C. Kao, Z. H. Chen, H. E. Yen, T. H. Liu, and C. L. Huang, Jpn. J. Appl. Phys. 57, 03DA04 (2018).CrossRefGoogle Scholar
  14. 14.
    A. T. Martín-Luengo, H. Köstenbauer, J. Winkler, and A. Bonanni, AIP Adv. 7, 015034 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    G. E. Buono-Core, A. H. Klahna, C. Castillo, E. Muñoz, C. Manzur, G. Cabellob, and B. Chornik, J. Non-Cryst. Solids 387, 21 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    J. Song, X. Ni, D. Zhang, and H. Zheng, Solid State Sci. 8, 1164 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Bortotia, A. F. Gavanskia, Y. R. Velazquezb, A. Gallia, and E. G. de Castro, J. Solid State Chem. 252, 111 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    I. Irfan, H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So, Appl. Phys. Lett. 96, 243307 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    I. Irfan, A. J. Turinske, Z. Bao, and Y. Gao, Appl. Phys. Lett. 101, 093305 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    C. Wang and I. Irfan, J. Vac. Sci. Technol. B 32, 040801 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).CrossRefGoogle Scholar
  22. 22.
    I. Lindau and W. E. Spicer, J. Electron. Spectrosc. 3, 409 (1974).CrossRefGoogle Scholar
  23. 23.
    L. Zhang, B. Wen, Y. N. Zhu, Z. Chai, X. Chen, and M. Chen, Comput. Mater. Sci. 150, 484 (2018).CrossRefGoogle Scholar
  24. 24.
    Y. Z. Wang, M. Yang, D. C. QI, S. Chen, W. Chen, A. T. S. Wee, and X. Y. Gao, J. Chem. Phys. 134, 034706 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    T. C. Arnoldussen, J. Electrochem. Soc. 123, 527 (1976).CrossRefGoogle Scholar
  26. 26.
    N. Desai, S. Mali, V. Kondalka, R. Mane, C. Hong, and P. Bhosale, J. Nanomed. Nanotechnol. 6, 338 (2015).CrossRefGoogle Scholar
  27. 27.
    H. Akutsu, S. Yamaguchi, K. Otsubo, M. Tamaoki, A. Shimazaki, R. Yoshimura, F. Aiga, and T. Tada, Proc. SPIE 7028, 702829 (2008).CrossRefGoogle Scholar
  28. 28.
    A. T. Martín-Luengo, H. Köstenbauer, J. Winkler, and A. Bonanni, AIP Adv. 7, 015034 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    K. Koike, R. Wada, S. Yagi, Y. Harada, S. Sasa, and M. Yano, Jpn. J. Appl. Phys. 53, 05FJ02 (2014).CrossRefGoogle Scholar
  30. 30.
    I. Navas, R. Vinodkumar, and V. P. Mahadevan Pillai, Appl. Phys. A 103, 373 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    T. Toyoda, H. Nakanishi, S. Endo, and T. Irie, J. Phys. D 18, 747 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    H. Simchi, B. E. McCandless, T. Meng, J. H. Boyle, and W. N. Shafarman, J. Appl. Phys. 114, 013503 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    L. N. Bugerko, N. V. Borisova, V. E. Surovaya, and G. O. Eremeeva, Polzunov. Vestn. 1, 77 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. A. Dement’ev
    • 1
  • E. V. Ivanova
    • 1
  • M. N. Lapushkin
    • 1
    Email author
  • D. A. Smirnov
    • 2
  • S. N. Timoshnev
    • 3
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Institut für Festkörper- und Materialphysik, Technishe UniversitätDresdenGermany
  3. 3.St. Petersburg National Research Academic University, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations