Physics of the Solid State

, Volume 61, Issue 11, pp 2110–2116 | Cite as

On the Mechanism of Absorption and Restoration of Radiation Transmission in the Channel of Small-Scale Self-Focusing of a Short Laser Pulse in Neodymium Glass

  • N. E. Bykovskii
  • Yu. V. SenatskiiEmail author


When diagnosing a small-scale self-focusing (SSSF) channel of a 0.5-ns laser pulse with an intensity of 3–5 GW/cm2 in neodymium glasses, an absorption jump was detected (with a front of ≈0.5 ns) at wavelengths of 1.06 and 0.66 μm in addition to filament-like damage typical of SSSF, spectral broadening, and laser radiation scattering. The absorption coefficient reached 0.15 cm–1, and transmission in the medium was restored during 15–35 ns for phosphate glass and 5–10 ns for silicate glass. The physical bases of this effect of the appearance and relaxation of absorption in glasses have not been previously presented. An analysis of the experimental data showed that the absorption jump is due to the fast population of the 4I11/2 level of Nd3+ ions in glasses when nonlinear processes occur in the SSSF channel such as stimulated Raman scattering and broadening of the laser pulse spectrum. The relaxation time of the population at the 4I11/2 level and the restoration of transmission in glasses after the termination of the laser pulse are determined by the characteristic sizes of the Nd3+ ions excitation regions arising in the samples upon interference of the laser and scattered radiation, as well as the thermophysical characteristics of the glasses.


neodymium glass powerful laser pulse self-focusing induced absorption 



This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00285.


The authors declare that they have no conflicts of interest.


  1. 1.
    N. E. Bykovskii, N. B. Baranova, B. Ya. Zel’dovich, and Yu. V. Senatskii, Kvant. Elektron. 1, 2435 (1974).ADSGoogle Scholar
  2. 2.
    J. A. Fleck, Jr., J. R. Morris, and E. S. Bliss, IEEE J. Quantum Electron. 14, 353 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    N. B. Baranova, N. E. Bykovsky, S. V. Tchekalin, and Yu. V. Senatsky, J. Sov. Laser Res. 1, 53 (1980).CrossRefGoogle Scholar
  4. 4.
    V. V. Ivanov, Yu. V. Senatsky, and G. V. Sklizkov, Phys. Lett. A 124, 381 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Ivanov, Yu. V. Senatskii, and G. V. Sklizkov, JETP Lett. 45, 522 (1987).ADSGoogle Scholar
  6. 6.
    N. E. Bykovskii, V. V. Ivanov, Yu. V. Senatskii, and G. V. Sklizkov, Sov. J. Quantum Electron. 18, 783 (1988).CrossRefGoogle Scholar
  7. 7.
    V. V. Ivanov, Yu. V. Senatskii, and G. V. Sklizkov, JETP Lett. 47, 95 (1988).ADSGoogle Scholar
  8. 8.
    A. A. Mak, L. N. Soms, V. A. Fromzel’, and V. E. Yashin, Neodymium Glass Lasers (Nauka, Moscow, 1990) [in Russian].Google Scholar
  9. 9.
    S. G. Lukishova, Yu. V. Senatsky, N. E. Bykovsky, and A. S. Scheulin, Top. Appl. Phys. 114, 191 (2009).CrossRefGoogle Scholar
  10. 10.
    S. V. Chekalin and V. P. Kandidov, Phys. Usp. 56, 123 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Fisher and L. T. James, Opt. Commun. 13, 402 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    L. E. Ageeva, N. B. Brachkovskaya, S. G. Lunter, A. K. Przhevuskii, and M. N. Tolstoi, Sov. J. Quantum Electron. 6, 1107 (1977).Google Scholar
  13. 13.
    A. A. Mak, D. S. Prilezhaev, V. A. Serebryakov, and A. D. Starikov, Opt. Spektrosk. 33, 689 (1972).Google Scholar
  14. 14.
    Yu. P. Rudnitskii, R. V. Smirnov, and V. M. Chernyak, Kvant. Elektron. 3, 2035 (1976).Google Scholar
  15. 15.
    W. E. Martin and D. Milam, IEEE J. Quantum Electron. 18, 1155 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    V. H. Alekseev, D. I. Dmitriev, A. N. Zhilin, and V. N. Chernov, Sov. J. Quantum Electron. 15, 95 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Ivanov, Cand. Sci. Dissertation (Phys. Inst. Acad. Sci. USSR, Moscow, 1988).Google Scholar
  18. 18.
    C. Bibeau, S. Payne, and H. Powell, J. Opt. Soc. Am. B 12, 1981 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    N. E. Bykovsky, E. V. Zavedeev, V. G. Ralchenko, and Yu. V. Senatsky, Laser Phys. Lett. 12, 056102 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    N. E. Bykovskii, E. V. Zavedeev, and Yu. V. Senatskii, Phys. Solid State 57, 798 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  23. 23.
    L. I. Avakyants, I. M. Buzhinskii, E. I. Koryagina, and V. F. Surkova, Sov. J. Quantum Electron. 8, 423 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    D. Messias, C. Jacinto, M. Bell, and T. Catunda, IEEE J. Quantum Electron. 43, 751 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    S. Balachandar, N. C. Shivaprakash, and L. Kameswara Rao, Pramana J. Phys. 88, 41 (2017).Google Scholar
  26. 26.
    L. Kubicar, V. Vretenar, and U. Hammerschmidt, Int. J. Thermophys. 26, 507 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations