Physics of the Solid State

, Volume 61, Issue 8, pp 1456–1463 | Cite as

Impact of the Sintering Additive Al2O3 on the Electrical Conductivity of Proton-Conducting Electrolyte CaZr0.95Sc0.05O3 – δ

  • L. A. DunyushkinaEmail author
  • A. N. Meshcherskikh
  • A. Sh. Khaliullina
  • V. B. Balakireva
  • A. A. Pankratov


The impact of sintering additive Al2O3 on the electrical conductivity of calcium zirconate-based polycrystalline proton-conducting electrolyte CaZr0.95Sc0.05O3 – δ (CZS) is studied. With the sintering additive Al2O3, ceramic samples synthesized by a combustion technique are denser, and relatively low synthesis temperatures can be used (1470°C). Adding 0.1–0.5 wt % Al2O3 leads to an increase in the grain size from 100 nm to 1–2 μm. Increasing the Al2O3 content up to 0.3 wt % favors a growth in the electrolyte conductivity. For samples containing Al2O3, calcium aluminates are detected at grain boundaries. In samples exposed to humid air, charge transfer both in the grain bulk and at intergrain boundaries is found to be mediated by protons.


calcium zirconate proton-conducting electrolyte sintering additive electrical conductivity 



Scanning electron microscopy and X-ray diffraction studies were performed using the equipment of the Center of Collective Use “Composition of Matter,” Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences. The authors are grateful to B.D. Antonov for the X-ray studies.


The work was supported within the Program for Fundamental Research by the Ural Branch of Russian Academy of Sciences (project no. 18-10-3-42).


We have no conflicts of interest to declare.


  1. 1.
    S. Kim and J. Maier, J. Electrochem. Soc. 149, J73 (2002).CrossRefGoogle Scholar
  2. 2.
    J. Wang and H. Conrad, J. Mater. Sci. 49, 6074 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    C. Kjølseth, H. Fjeld, Ø. Prytz, P. I. Dahl, C. Estournès, R. Haugsrud, and T. Norby, Solid State Ionics 181, 268 (2010).CrossRefGoogle Scholar
  4. 4.
    X. Guo, S. Mi, and R. Waser, Electrochem. Solid-State Lett. 8, J1 (2005).CrossRefGoogle Scholar
  5. 5.
    X. Guo and Y. Ding, J. Electrochem. Soc. 151, J1 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Shirpour, R. Merkle, and J. Maier, Solid State Ionics 225, 304 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Tong, A. Subramaniyan, H. Guthrey, D. Clark, B. P. Gorman, and R. O. Hayre, Solid State Ionics 211, 26 (2012).CrossRefGoogle Scholar
  8. 8.
    V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, and A. Nikonov, J. Nanosci. Nanotechnol. 10, 7411 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. Lin, S. Fang, D. Su, K. S. Brinkman, and F. Chen, Nat. Commun. 6, 6824 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    X. Guo and J. Maier, J. Electrochem. Soc. 148, E121 (2001).CrossRefGoogle Scholar
  11. 11.
    Yu. V. Lyagaeva, G. K. Vdovin, I. V. Nikolaenko, D. A. Medvedev, and A. K. Demin, Semiconductors 50, 839 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zheng, M. Zhou, L. Ge, S. Li, H. Chen, and L. Guo, J. Alloys Compd. 509, 546 (2011).CrossRefGoogle Scholar
  13. 13.
    D. Xu, X. Liu, S. Xu, D. Yan, L. Pei, C. Zhu, D. Wang, and W. Su, Solid State Ionics 192, 510 (2011).CrossRefGoogle Scholar
  14. 14.
    V. Gil, J. Tartaj, C. Moure, and P. Duran, Ceram. Int. 33, 471 (2007).CrossRefGoogle Scholar
  15. 15.
    A. V. Kuz’min, A. Yu. Stroeva, V. P. Gorelov, Yu. V. Novikova, A. S. Lesnicheva, A. S. Farlenkov, and A. V. Khodimchuk, Al’tern. Energ. Ekol. 28–30, 54 (2017).Google Scholar
  16. 16.
    I. V. Beketov, Yu. A. Kotov, A. M. Murzakaev, O. V. Samatov, V. P. Volkov, R. Bohme, and G. Schumacher, Mater. Sci. Forum 225–227, 913 (1995).Google Scholar
  17. 17.
    S. V. Gorbunov, A. F. Zatsepin, V. A. Pustovarov, S. O. Cholakh, and V. Yu. Yakovlev, Phys. Solid State 47, 733 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    B. Boukamp, Solid State Ionics 18–19, 136 (1986).CrossRefGoogle Scholar
  19. 19.
    B. Boukamp, Solid State Ionics 20, 31 (1986).CrossRefGoogle Scholar
  20. 20.
    S. C. Hwang and G. M. Choi, J. Eur. Ceram. Soc. 25, 2609 (2005).CrossRefGoogle Scholar
  21. 21.
    D. Neagu, G. Tsekouras, D. N. Miller, H. Menard, and J. T. S. Irvine, Nat. Chem. 5, 916 (2013).CrossRefGoogle Scholar
  22. 22.
    I. C. Fullarton, J. P. Jacobs, H. E. van Benthem, J. A. Kilner, H. H. Brongersma, P. J. Scanlon, and B. C. H. Steele, Ionics 1, 51 (1995).CrossRefGoogle Scholar
  23. 23.
    H. Téllez, J. Druce, J. A. Kilnerac, and T. Ishihara, Faraday Discuss. 182, 145 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    H. Téllez, J. Druce, Y. Ju, J. Kilner, and T. Ishihara, Int. J. Hydrogen Energy 39, 20856 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu, Y. Chen, and M. Liu, Chem. Soc. Rev. 46, 6345 (2017).CrossRefGoogle Scholar
  26. 26.
    D. E. Macphee and E. E. Lachowski, Lea’s Chemistry of Cementand Concrete, Ed. P. C. Hewlett (Butterworth-Heinemann, Oxford, Burlington, 2003), p. 95.Google Scholar
  27. 27.
    A. M. Hoefsloot, P. H. F. Thijssen, and R. Metselaar, Silicat. Ind., Nos. 3–4, 35 (1985).Google Scholar
  28. 28.
    K. D. Kreuer, Solid State Ionics 97, 1 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. A. Dunyushkina
    • 1
    Email author
  • A. N. Meshcherskikh
    • 1
  • A. Sh. Khaliullina
    • 1
  • V. B. Balakireva
    • 1
  • A. A. Pankratov
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations