Physics of the Solid State

, Volume 61, Issue 8, pp 1490–1493 | Cite as

On the Adsorption of Gases on Silicon Carbide: Simple Estimates

  • S. Yu. DavydovEmail author
  • O. V. Posrednik


The adsorption of atomic and molecular nitrogen and ammonia on silicon carbide is considered within two physically different (solid-state and quantum-chemical) approaches. In the solid-state approach, the Haldane–Anderson model is used for the density of states of the SiC 4H and 6H polytypes to demonstrate that the energy of binding to the substrate is 6 and 3 eV for N atoms and N2 molecule, respectively. In the quantum-chemical approach, the model of a surface diatomic molecule is used to find that the binding energy of atomic nitrogen is 6 and 4 eV for adsorption on the C- and Si-edges, respectively. It has been established that the charge transfer between an adsorbate and the substrate may be neglected in all the considered cases. It has been hypothesized that the dissociation of a molecule with the further passivation of its dangling sp3-orbitals with hydrogen atoms takes place for silicon carbide as in the case of ammonia adsorption on Si(100).


Haldane–Anderson model surface molecule model charge transfer adsorption energy 



The authors are grateful to S.A. Kukushkin for proposing the topic and useful discussions.


The authors declare that they have no conflicts of interest.


  1. 1.
    Silicon Carbide: Recent Major Advances, Ed. by W. J. Choyke, H. Matsunami, and G. Pensl (Springer, Berlin, Heidelberg, 2004). Scholar
  2. 2.
    Advances in Silicon Carbide. Processing and Applications, Ed. by S. E. Saddow and A. Agarwal (Artech House, Boston, London, 2004). Scholar
  3. 3.
    A. A. Lebedev, Semicond. Sci. Technol. 21, R17 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    Y. H. Woo, T. Yu, and Z. X. Chen, Appl. Phys. Rev. 108, 071301 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    G. V. Benemanskaya, P. A. Dement’ev, S. A. Kukushkin, A. V. Osipov, and S. N. Timoshnev, Tech. Phys. Lett. 45, 201 (2019).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    S. Yu. Davydov, Adsorption Theory: Model Hamiltonian Method (SPbGETU LETI, St. Petersburg, 2013) [in Russian]; Scholar
  8. 8.
    S. Yu. Davydov, A. A. Lebedev, and O. V. Posrednik, An Elementary Introduction to the Theory of Nanosystems (Lan’, St. Petersburg, 2014) [in Russian].Google Scholar
  9. 9.
    S. Yu. Davydov and S. V. Troshin, Phys. Solid State 49, 1583 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    S. Yu. Davydov and A. V. Pavlyk, Semiconductors 35, 796 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    S. Yu. Davydov and A. V. Pavlyk, Tech. Phys. Lett. 29, 500 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    S. Yu. Davydov and O. V. Posrednik, The Method of Bonding Orbitals in Semiconductor Theory, the School-Book (SPbGETU LETI, St. Petersburg, 2007) [in Russian]; Scholar
  13. 13.
    J. P. Xu, P. T. Lai, C. L. Chan, and Y. C. Cheng, Appl. Phys. Lett. 76, 372 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    Y. S. Liu, S. Hashimoto, K. Abe, R. Hayashibe, T. Yamakami, M. Nakao, and K. Kamimura, Jpn. J. Appl. Phys. 44, 673 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Iwasaki, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, Appl. Phys. Express 3, 026201 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    F. Liu, C. Carraro, A. P. Pisano, and R. Maboudian, J. Micromech. Microeng. 20, 035011 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    E. Pitthan, A. L. Gobbi, H. I. Boudinov, and F. C. Stedile, J. Electron. Mater. 44, 2823 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    C. Yu. Davydov, Semiconductors 53, 699 (2019).ADSCrossRefGoogle Scholar
  19. 19.
    Physical Values, The Handbook, Ed. by E. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  20. 20.
    Tables of Interatomic Distances and Configuration in Molecules and Ions, Ed. by L. E. Sutton (The Chemical Society, London, 1958).Google Scholar
  21. 21.
    M. D. Ramsier and J. T. Yates, Jr., Surf. Sci. Rep. 12, 243 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    S. Yu. Davydov and S. K. Tikhonov, Phys. Solid State 37, 1514 (1995).ADSGoogle Scholar
  23. 23.
    W. A. Harrison, Phys. Rev. B 27, 3552 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    W. A. Harrison, Phys. Rev. B 31, 2121 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    S. Yu. Davydov and O. V. Posrednik, Phys. Solid State 57, 837 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fedorus, Sov. Phys. Usp. 20, 432 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    S. Yu. Davydov, Tech. Phys. 59, 624 (2014).CrossRefGoogle Scholar
  28. 28.
    S. Yu. Davydov, A. V. Zubov, and A. A. Lebedev, Tech. Phys. Lett. 45 (5) (2019, in press).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Saint-Petersburg Electrotechnical UniversitySt. PetersburgRussia

Personalised recommendations