Physics of the Solid State

, Volume 61, Issue 8, pp 1494–1501 | Cite as

Super-Heat Resistant Polymer Nanocomposites Based on Heterocyclic Networks: Structure and Properties

  • V. A. BershteinEmail author
  • A. M. Fainleib
  • P. N. Yakushev
  • D. A. Kirilenko
  • O. G. Melnychuk


The heterocyclic polymer network nanocomposites obtained from bisphtalonitrile and various (from 0.03 to 5 wt %) modified silicate montmorillonite (MMT) nanolayers are studied. The nanostructure together with thermal, relaxation, and elastic properties of the composites are characterized with transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). DMA and TGA measurements were performed in air and nitrogen mediums in the temperature range from 20 to 600–900°C. There was a various degree of exfoliation of MMT in the matrix to form single nanolayers, as well as thin and “thick” packs of MMT nanolayers, depending on its amount. We showed that there are strong constraining dynamics effects of the matrix by nanoparticles and sharp dynamic heterogeneity in the glass transition. We found that there are possibilities of complete suppression of the latter and of preservation of elastic characteristics of the composites unchanged at the temperatures from 20 to 600°C. The nanocomposites exhibit uniquely high thermal properties. A glass transition temperature of 570°C and satisfactory thermal stability are achieved with preservation of integrity of the material up to ~500°C in air and up to ∼900°C in nitrogen.


polymer nanocomposites thermostable materials heterocyclic networks montmorillonite nanostructure 



TEM and EDXS experiments were performed using equipment of the Federal Joint Research Center supported by the Ministry of Education and Science of Russian Federation “Materials Science and Characterization in Advanced Technology” (project no. RFMEFI62117X0018). TGA experiments were performed using equipment of the Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine.


There are no conflicts of interest to declare.


  1. 1.
    Chemistry and Technology of Cyanate Ester Resins, Ed. by I. Hamerton (Chapman and Hall, Glasgow, 1994).Google Scholar
  2. 2.
    Thermostable Polycyanurates: Synthesis, Modification, Structure and Properties, Ed. by A. M. Fainleib (Nova Science, New York, 2010).Google Scholar
  3. 3.
    M. Derradji, J. Wang, and W. B. Liu, Phthalonitrile Resins and Composites. Properties and Applications (Elsevier, New York, 2018).Google Scholar
  4. 4.
    T. M. Keller and A. Va, US Patent No. 4408035 (1983).Google Scholar
  5. 5.
    T. M. Keller and T. Price, J. Macromol. Sci., A 18, 931 (1982).Google Scholar
  6. 6.
    T. M. Keller, J. Polymer Sci. A 26, 3199 (1988).Google Scholar
  7. 7.
    Y. Lei, G. Hu, R. Zhao, H. Guo, and X. Zhao, J. Phys. Chem. Solids 73, 1335 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    M. Derradji, N. Ramdani, T. Zhang, J. Wang, Z. Lin, M. Yang, X. Xu, and W. Liu, Mater. Lett. 149, 81 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Derradji, J. Wang, and W. B. Liu, Mater. Lett. 182, 380 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Derradji, N. Ramdani, L.-D. Gong, A. Henniche, and W. B. Liu, Polym. Adv. Technol. 27, 882 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Li, B. Yu, D. Zhang, J. Lei, and Z. Nan, Polymers 9, 334 (2017).CrossRefGoogle Scholar
  12. 12.
    V. A. Bershtein, A. M. Fainleib, P. N. Yakushev, D. A. Kirilenko, K. G. Gusakova, D. I. Markina, O. G. Melnychuk, and V. A. Ryzhov, Polymer 165, 39 (2019).CrossRefGoogle Scholar
  13. 13.
    D. A. Kirilenko, A. T. Dideykin, A. E. Aleksenskiy, A. A. Sitnikova, S. G. Konnikov, and A. Ya. Vul’, Micron 68, 23 (2015).CrossRefGoogle Scholar
  14. 14.
    E. P. Gannelis, R. Krishnamourt, and E. Manias, Adv. Polym. Sci. 138, 108 (1999).Google Scholar
  15. 15.
    V. A. Bershtein and P. N. Yakushev, Adv. Polym. Sci. 230, 73 (2010).CrossRefGoogle Scholar
  16. 16.
    V. A. Bershtein, A. M. Fainleib, L. M. Egorova, K. G. Gusakova, O. P. Grigoyeva, D. A. Kirilenko, S. G. Konnikov, V. A. Ryzhov, P. N. Yakushev, and N. Lavrenyuk, Nanoscale Res. Lett. 10, 165 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Bershtein, A. M. Fainleib, D. A. Kirilenko, P. N. Yakushev, K. G. Gusakova, N. Lavrenyuk, and V. A. Ryzhov, Polymer 103, 36 (2016).CrossRefGoogle Scholar
  18. 18.
    V. A. Bershtein, A. M. Fainleib, K. G. Gusakova, D. A. Kirilenko, P. N. Yakushev, L. M. Egorova, N. Lavrenyuk, and V. A. Ryzhov, Eur. Polym. J. 85, 375 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Leszczynska, J. Njuguna, K. Pielichowski, and J. R. Banerjee, Thermochim. Acta 454, 1 (2007).CrossRefGoogle Scholar
  20. 20.
    V. A. Bershtein, A. M. Fainleib, P. N. Yakushev, D. A. Kirilenko, K. G. Gusakova, O. Melnichuk, and V. A. Ryzhov, Eur. Polym. Congress (EPF 2019), Thesis, abstract NANO-C38, р. 192, Crete, June 9–14 (2019).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Bershtein
    • 1
    Email author
  • A. M. Fainleib
    • 2
  • P. N. Yakushev
    • 1
  • D. A. Kirilenko
    • 1
  • O. G. Melnychuk
    • 2
    • 3
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Institute of Macromolecular ChemistryKyivUkraine
  3. 3.National University Kyiv-Mohyla AcademyKyivUkraine

Personalised recommendations