Advertisement

Physics of the Solid State

, Volume 61, Issue 8, pp 1471–1474 | Cite as

Metal–Insulator Phase Transition in Tungsten-Doped Vanadium Dioxide Thin Films

  • V. N. AndreevEmail author
  • V. A. Klimov
PHASE TRANSITIONS
  • 16 Downloads

Abstract

The electrical conductivity of thin polycrystalline V(1 – x)WxO2 has been studied in a wide temperature range, which covers the regions of both the metallic and insulator phases. An increase in the tungsten concentration is shown to shift the metal–insulator phase transition toward lower temperatures, while the temperature range of the coexistence of the phases monotonically increases as the impurity concentration increases. The temperature dependence of the conductivity of the insulator phase of V(1 – x)WxO2 is explained using the hopping conduction model that takes into account the influence of thermal vibrations of atoms on the resonance integral. Parameter ε in the dependence on the level of doping VO2 has been calculated.

Keywords:

phase transition electrical conductivity doping and polaron 

Notes

CONFLICT OF INTEREST

The authors declare that they do not have conflicts of interest.

REFERENCES

  1. 1.
    V. N. Andreev and V. A. Klimov, Phys. Solid State 49, 2251 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. Zilbersztejn and N. F. Mott, Phys. Rev. B 11, 4383 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    O. B. Danilov, V. A. Klimov, O. P. Mikheeva, A. I. Sidorov, S. A. Tul’ski, E. B. Shadrin, and I. L. Yachnev, Tech. Phys. 48, 73 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Wu, Q. Gu, B. S. Guiton, N. P. deLeon, L. Ouyang, and H. Park, Nano Lett. 6, 2313 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Gobden, Nature (London, U.K.) 500, 431 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. N. Andreev, V. A. Klimov, and M. E. Kompan, Phys. Solid State 55, 2097 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    V. N. Andreev, V. A. Klimov, and M. E. Kompan, Tech. Phys. Lett. 39, 566 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    V. N. Andreev and V. A. Klimov, Phys. Solid State 58, 606 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Andreev and V. A. Klimov, Phys. Solid State 53, 577 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    E. Strelkov, A. Tselev, I. Ivanov, J. D. Budai, J. Zhang, J. Z. Tischler, I. Kravchenko, S. V. Kalinin, and A. Kolmakov, Nano Lett. 12, 6198 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelkov, K. Jones, R. Hrokscg, A. Kolmakov, and S. V. Kalinin, Nano Lett. 10, 2003 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. Tselev, E. Strelkov I. A. Luk’yanchuk, J. D. Budai, J. Z. Tischler, I. N. Ivanov, K. Jones, A. Kolmakov, and S. V. Kalinin, Nano Lett. 10, 4409 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films 436, 269 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    C. Marini, E. Arcangeletti, D. DiCastro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, Phys. Rev. B 77, 235111 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Andreev, V. A. Klimov, M. E. Kompan, and B. A. Melekh, Phys. Solid State 56, 1857 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    V. N. Andreev and V. A. Klimov, Phys. Solid State 60, 2604 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    N. F. Mott, Metall–Insulator Transitions (Tailor and Francis, London, 1974).Google Scholar
  18. 18.
    R. A. Aliev, V. N. Andreev, V. M. Kapralova, V. A. Klimov, A. I. Sobolev, and E. B. Shadrin, Phys. Solid State 48, 929 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    V. V. Bryksin, Sov. Phys. JETP 73, 861 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations