Advertisement

Physics of the Solid State

, Volume 61, Issue 8, pp 1464–1470 | Cite as

Raman Spectra of Polycrystalline Lithium Sulfate, Sodium Sulfate, and Potassium Sulfate in the Pretransition Temperature Range Lower the Structural Phase Transition

  • A. R. AlievEmail author
  • I. R. Akhmedov
  • M. G. Kakagasanov
  • Z. A. Aliev
PHASE TRANSITIONS
  • 7 Downloads

Abstract

Molecular relaxation processes in lithium sulfate (Li2SO4), sodium sulfate (Na2SO4), and potassium sulfate (K2SO4) are studied using Raman spectroscopy (RS). The order parameter decreases in the low-temperature phase as it approaches the phase transition. For example, this is typical of a first-order phase transition close to a second-order phase transition. The existence of the pretransition region in the investigated sulfates Li2SO4, Na2SO4, and K2SO4 is proven.

Keywords:

ionic crystals Raman scattering molecular spectroscopy vibrational relaxation and pretransition 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    S. V. Karpov, T. Kraevskii, and K. V. Timofeev, Phys. Solid State 37, 1234 (1995).ADSGoogle Scholar
  2. 2.
    M. B. Smirnov and J. Hlinka, Phys. Solid State 42, 2288 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    V. I. Zinenko and N. G. Zamkova, Phys. Solid State 43, 2290 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    Jianjun Liu, Chun-gang Duan, W. N. Mei, R. W. Smith, and J. R. Hardy, J. Solid State Chem. 163, 294 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Prokhorov, G. N. Neilo, A. D. Prokhorov, and A. S. Karnachev, Phys. Solid State 48, 340 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. N. Zhuravlev and D. V. Korabel’nikov, Phys. Solid State 51, 69 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    M. Pravica, Y. Wang, D. Sneed, Sh. Reiser, and M. White, Chem. Phys. Lett. 660, 37 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 58, 1166 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 59, 254 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    E. S. Ivanova, E. A. Petrzhik, R. V. Gainutdinov, A. K. Lashkova, and T. R. Volk, Phys. Solid State 59, 569 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, Phys. Solid State 59, 752 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    V. S. Bondarev, E. A. Mikhaleva, I. N. Flerov, and M. V. Gorev, Phys. Solid State 59, 1118 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, Phys. Solid State 60, 347 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    Nguyen Hoai Thu’o’ng, A. S. Sidorkin, and S. D. Milovidova, Phys. Solid State 60, 559 (2018).CrossRefGoogle Scholar
  15. 15.
    E. A. Mikhaleva, I. N. Flerov, A. V. Kartashev, M. V. Gorev, M. S. Molokeev, L. N. Korotkov, and E. Rysiakiewicz-Pasek, Phys. Solid State 60, 1338 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 60, 2058 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    A. Ubbelodhe, Melting and Crystal Structure (Oxford Univ. Press, London, 1965; Mir, Moscow, 1969).Google Scholar
  18. 18.
    G. D. Koposov and D. Yu. Bardyug, Tech. Phys. Lett. 33, 622 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    E. I. Demikhov, V. K. Dolganov, and V. M. Filev, JETP Lett. 37, 361 (1983).ADSGoogle Scholar
  20. 20.
    M. A. Anisimov, E. E. Gorodetskii, and V. E. Podnek, JETP Lett. 37, 414 (1983).ADSGoogle Scholar
  21. 21.
    E. I. Demikhov and V. K. Dolganov, JETP Lett. 38, 445 (1983).ADSGoogle Scholar
  22. 22.
    V. A. Kizel’ and S. I. Panin, JETP Lett. 44, 93 (1986).Google Scholar
  23. 23.
    V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransitional Phenomena and Martensitic Transformations (UrO RAN, Ekaterinburg, 1998) [in Russian].Google Scholar
  24. 24.
    A. A. Klopotov, T. L. Chekalkin, and V. E. Gyunter, Tech. Phys. 46, 770 (2001).CrossRefGoogle Scholar
  25. 25.
    E. I. Kuznetsova, Cand. Sci. (Phys. Math.) Dissertation (Inst. Met. Phys. Ural Branch of RAS, Ekaterinburg, 2003).Google Scholar
  26. 26.
    V. N. Grishkov, A. I. Lotkov, S. F. Dubinin, S. G. Teploukhov, and V. D. Parkhomenko, Phys. Solid State 46, 1386 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    S. V. Mel’nikova and V. A. Grankina, Phys. Solid State 46, 515 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    S. V. Mel’nikova, L. I. Isaenko, V. M. Pashkov, and I. V. Pevnev, Phys. Solid State 47, 332 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    S. V. Mel’nikova, V. D. Fokina, and N. M. Laptash, Phys. Solid State 48, 117 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    S. V. Mel’nikova, L. I. Isaenko, V. M. Pashkov, and I. V. Pevnev, Phys. Solid State 48, 2152 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    S. V. Mel’nikova, N. M. Laptash, and K. S. Aleksandrov, Phys. Solid State 52, 2168 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    F. J. Schäfer and W. Kleeman, J. Appl. Phys. 57, 2606 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    E. E. Slyadnikov, Phys. Solid State 46, 1095 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    E. E. Slyadnikov, Tech. Phys. Lett. 31, 195 (2005).ADSGoogle Scholar
  35. 35.
    E. E. Slyadnikov, Phys. Solid State 47, 484 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    E. E. Slyadnikov, Doctoral (Phys. Math.) Dissertation (Inst. Phys. Strength Sci. Mater. Sib. Branch of RAS, Tomsk, 2005).Google Scholar
  37. 37.
    A. P. Belyaev, V. P. Rubets, V. V. Antipov, and N. S. Bordei, Tech. Phys. 59, 1101 (2014).CrossRefGoogle Scholar
  38. 38.
    V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56, 2393 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    V. I. Maksimov, T. P. Surkova, V. D. Parkhomenko, and E. N. Yushkova, Phys. Solid State 58, 650 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    A. P. Belyaev, V. P. Rubets, and V. V. Antipov, Tech. Phys. 62, 645 (2017).CrossRefGoogle Scholar
  41. 41.
    A. R. Aliev, M. M. Gafurov, I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev, Phys. Solid State 60, 1203 (2018).ADSCrossRefGoogle Scholar
  42. 42.
    V. I. Maksimov, E. N. Maksimova, T. P. Surkova, and A. P. Vokhmyanin, Phys. Solid State 60, 2424 (2018).ADSCrossRefGoogle Scholar
  43. 43.
    A. N. Vtyurin, A. Belyu, A. S. Krylov, M. L. Afanas’ev, and A. P. Shebanin, Phys. Solid State 43, 2307 (2001).ADSCrossRefGoogle Scholar
  44. 44.
    Light Scattering near Phase Transitions, Ed. by H. Z. Cummins and A. P. Levanyuk (North-Holland, Amsterdam, 1983).Google Scholar
  45. 45.
    S. V. Karpov and A. A. Shultin, Sov. Phys. Solid State 17, 1915 (1975).Google Scholar
  46. 46.
    Ya. Ya. Abolin’sh, S. V. Karpov, and A. A. Shultin, Sov. Phys. Solid State 20, 2114 (1978).Google Scholar
  47. 47.
    M. M. Gafurov, A. R. Aliev, and I. R. Akhmedov, Spectrochim. Acta, A 58, 2683 (2002).ADSCrossRefGoogle Scholar
  48. 48.
    K. S. Aleksandrov and B. V. Beznosikov, Structural Phase Transitions in Crystals (Potassium Sulfate Family) (Nauka, Novosibirsk, 1993) [in Russian].Google Scholar
  49. 49.
    E. Cazzanelli and R. Frech, J. Chem. Phys. 81, 4729 (1984).ADSCrossRefGoogle Scholar
  50. 50.
    R. Murugan, A. Ghule, and H. Chang, J. Phys.: Condens. Matter 12, 677 (2000).ADSGoogle Scholar
  51. 51.
    Byoung-Koo Choi and D. J. Lockwood, J. Phys.: Condens. Matter 17, 6095 (2005).ADSGoogle Scholar
  52. 52.
    S. M. Bobade, P. Gopalan, and A. R. Kulkarni, Ionics 15, 353 (2009).CrossRefGoogle Scholar
  53. 53.
    M. Ishigame and S. Yamashita, Phys. Status Solidi B 116 (1983).Google Scholar
  54. 54.
    Chemical Encyclopedy (Sov. Entsiklopediya, Moscow, 1990, 1992), Vol. 2, pp. 289, 608; Vol. 3, p. 185 [in Russian].Google Scholar
  55. 55.
    C. W. Bale and A. D. Pelton, CALPHAD 6, 255 (1982).CrossRefGoogle Scholar
  56. 56.
    Y. Dessureault, J. Sangster, and A. D. Pelton, J. Electrochem. Soc. 137, 2941 (1990).CrossRefGoogle Scholar
  57. 57.
    D. Lindberg, R. Backman, and P. Chartrand, J. Chem. Thermodyn. 39, 942 (2007).CrossRefGoogle Scholar
  58. 58.
    A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Mol. Phys. 100, 3385 (2002).ADSCrossRefGoogle Scholar
  59. 59.
    A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Chem. Phys. Lett. 359, 262 (2002).ADSCrossRefGoogle Scholar
  60. 60.
    A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Chem. Phys. Lett. 353, 270 (2002).ADSCrossRefGoogle Scholar
  61. 61.
    A. R. Aliev and A. Z. Gadzhiev, J. Mol. Liq. 107, 59 (2003).CrossRefGoogle Scholar
  62. 62.
    A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Chem. Phys. Lett. 378, 155 (2003).ADSCrossRefGoogle Scholar
  63. 63.
    A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, Opt. Spectrosc. 123, 587 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. R. Aliev
    • 1
    Email author
  • I. R. Akhmedov
    • 1
  • M. G. Kakagasanov
    • 1
  • Z. A. Aliev
    • 1
  1. 1.Institute of Physics named after Kh. I. Amirkhanov, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia

Personalised recommendations