Physics of the Solid State

, Volume 60, Issue 12, pp 2381–2401 | Cite as

Structural, Elastic, Electronic Properties and Interatomic Interactions in Metallic Tetraboride Series MB4 (M = Ru, Rh, Pd, Os, Ir, and Pt) Obtained from FLAPW–GGA Calculations

  • D. V. SuetinEmail author


The report presents the results of systematic first-principle FLAPW–GGA calculations of a series of metallic tetraborides MB4 (where M = Ru, Rh, Pd, Os, Ir, and Pt) with space groups Pmmn, Immm, R-3m, and Pnnm. Their equilibrium structural parameters, cohesion and formation energies, elastic constants, anisotropies, Vickers microhardnesses, Debye temperatures, sound velocities, as well as electronic properties and interatomic interactions are estimated and analyzed as compared to each other and the available theoretical data.



This work was performed in the framework of the State Task to the Russian Academy of Sciences, theme no. AAAAA-A16-116122810214-9.


  1. 1.
    R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner, J. Am. Chem. Soc. 127, 7264 (2005).CrossRefGoogle Scholar
  2. 2.
    M. Hebbache, L. Stuparevic, and D. Zivkovic, Solid State Commun. 139, 227 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    R. B. Kaner, J. J. Gilman, and S. H. Tolbert, Science (Washington, DC, U. S.) 308, 1268 (2005).CrossRefGoogle Scholar
  4. 4.
    J. J. Gilman, R. W. Cumberland, and R. B. Kaner, Int. J. Refract. Met. Hard. Mater. 24, 1 (2006).CrossRefGoogle Scholar
  5. 5.
    J. B. Levine, S. H. Tolbert, and R. B. Kaner, Adv. Funct. Mater. 19, 3519 (2009).CrossRefGoogle Scholar
  6. 6.
    H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kav-ner, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Science (Washington, DC, U. S.) 316, 436 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    X. Q. Chen, C. L. Fu, M. Krcmar, and G. S. Painter, Phys. Rev. Lett. 100, 196403 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    J. V. Rau and A. Latini, Chem. Mater. 21, 1407 (2009).CrossRefGoogle Scholar
  9. 9.
    Q. F. Gu, G. Krauss, and W. Steurer, Adv. Mater. 20, 3620 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Wang, Y. Liu, T. Cui, Y. Ma, and G. Zou, Appl. Phys. Lett. 93, 101905 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    V. Kalamse, S. Gaikwad, and A. Chaudhari, Bull. Mater. Sci. 33, 233 (2010).CrossRefGoogle Scholar
  12. 12.
    B. Kharat, S. B. Desmukh, and A. Chaudhari, Int. J. Quantum Chem. 109, 1103 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang, W. Chen, X. Chen, H. Y. Liu, Z. H. Ding, Y. M. Ma, X. D. Wang, Q. P. Cao, and J. Z. Jiang, J. Alloys Compd. 538, 115 (2012).CrossRefGoogle Scholar
  14. 14.
    X. W. Xu, K. Fu, L. L. Li, Z. M. Lu, X. H. Zhang, Y. Fan, J. Lin, G. D. Liu, H. Z. Luo, and C. C. Tang, Phys. B (Amsterdam, Neth.) 419, 105 (2013).Google Scholar
  15. 15.
    T. Yao, Y. Wang, H. Li, J. Lian, J. Zhang, and H. Gou, Comput. Mater. Sci. 65, 302 (2008).CrossRefGoogle Scholar
  16. 16.
    W. Chen and J. Z. Jiang, Solid State Commun. 150, 2093 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    S. Aydin and M. Simsek, Phys. Rev. B 80, 134107 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    X. Q. Chen, C. L. Fu, M. Krcmar, and G. S. Painter, Phys. Rev. Lett. 100, 196403 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    S. Chiodo, H. J. Gotsis, N. Russo, and E. Sicilia, Chem. Phys. Lett. 425, 311 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    H. Y. Chung, M. B. Weinberger, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Appl. Phys. Lett. 92, 261904 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Liang and B. Zhang, Phys. Rev. B 76, 132101 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    X. F. Hao, Y. H. Xu, Z. J. Wu, D. F. Zhou, X. J. Liu, X. Q. Cao, and J. Meng, Phys. Rev. B 74, 224112 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    F. Lin, K. Wu, J. He, R. Sa, Q. Li, and Y. Wei, Chem. Phys. Lett. 494, 31 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    M. Zhang, H. Yan, G. Zhang, and H. Wang, J. Phys. Chem. C 116, 4293 (2012).CrossRefGoogle Scholar
  25. 25.
    H.-Y. Yan, M.-G. Zhang, D.-H. Huang, and Q. Wie, Solid State Sci. 18, 17 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    B. Wang, D. Y. Wang, and Y. X. Wang, J. Alloys Compd. 573, 20 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Zhang, H. Yan, Q. Wei, and H. Wang, Comput. Mater. Sci. 68, 371 (2013).CrossRefGoogle Scholar
  28. 28.
    W-J. Zhao and B. Xu, Comput. Mater. Sci. 65, 372 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. Pan, W. T. Zheng, W. M. Guan, K. H. Zhang, and X. F. Fan, J. Solid State Chem. 207, 29 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. Technol., Vienna, 2001).Google Scholar
  31. 31.
    J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    P. E. Blöchl, O. Jepsen, and O. K. Anderson, Phys. Rev. B 49, 16223 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    I. R. Shein, V. S. Kiiko, Yu. N. Makurin, M. A. Gorbunova, and A. L. Ivanovskii, Phys. Solid State 49, 1067 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986).Google Scholar
  36. 36.
    W. Voigt, Lehrburch der Kristallphysik (Teubner, Leipzig, 1928).Google Scholar
  37. 37.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).CrossRefGoogle Scholar
  38. 38.
    S. Li, X. Ju, and C. Wan, Comput. Mater. Sci. 81, 378 (2014).CrossRefGoogle Scholar
  39. 39.
    R. Hill, Proc. Phys. Soc. London 65, 350 (1952).ADSCrossRefGoogle Scholar
  40. 40.
    M. L. Cohen, Phys. Rev. B 32, 7988 (1985).ADSCrossRefGoogle Scholar
  41. 41.
    S. F. Pugh, Philos. Mag. 45, 823 (1953).CrossRefGoogle Scholar
  42. 42.
    J. Haines, J. M. Leger, and G. Bocquillon, Ann. Rev. Mater. Res. 31, 1 (2001).ADSCrossRefGoogle Scholar
  43. 43.
    A. L. Ivanovskii, Progr. Mater. Sci. 57, 184 (2012).CrossRefGoogle Scholar
  44. 44.
    J. Y. Wang and Y. C. Zhou, Phys. Rev. B 69, 144108 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    J. Y. Wang, Y. C. Zhou, T. Liao, and Z. J. Lin, Appl. Phys. Lett. 89, 021917 (2006).ADSCrossRefGoogle Scholar
  46. 46.
    D. Connétable and O. Thomas, Phys. Rev. B 79, 094101 (2009).ADSCrossRefGoogle Scholar
  47. 47.
    S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).ADSCrossRefGoogle Scholar
  48. 48.
    H. Chung and W. R. Buessem, in Anisotropy in Single Crystal Refractory Compound, Ed. by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968), Vol. 2.Google Scholar
  49. 49.
    Y. J. Tian, B. Xu, and Z. S. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012).CrossRefGoogle Scholar
  50. 50.
    A. L. Ivanovskii, Int. J. Refract. Met. Hard Mater. 36, 179 (2013).CrossRefGoogle Scholar
  51. 51.
    D. M. Teter, MRS Bull. 23, 22 (1998).CrossRefGoogle Scholar
  52. 52.
    X. Jiang, J. Zhao, and X. Jiang, Comput. Mater. Sci. 50, 2287 (2011).CrossRefGoogle Scholar
  53. 53.
    X. Jiang, J. Zhao, A. Wu, Y. Bai, and X. J. Jiang, J. Phys.: Condens. Matter 22, 315503 (2010).ADSGoogle Scholar
  54. 54.
    X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermet. 19, 1275 (2011).CrossRefGoogle Scholar
  55. 55.
    A. Śimůnek, Phys. Rev. B 75, 172108 (2007).CrossRefGoogle Scholar
  56. 56.
    S. Veprek, J. Vacuum Sci. Technol. 17, 2401 (1999).ADSCrossRefGoogle Scholar
  57. 57.
    J. J. Gilman, Chemistry and Physics of Mechanical Hardness (Wiley, Hoboken, NJ, 2009).CrossRefGoogle Scholar
  58. 58.
    V. V. Brazhkin, High Press. Res. 27, 333 (2007).ADSCrossRefGoogle Scholar
  59. 59.
    O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).ADSCrossRefGoogle Scholar
  60. 60.
    B. Cordero, V. Gόmez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 21, 2832 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations