Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2571–2578 | Cite as

An Effect of Internal Structure of Bimetallic Nanoparticles on Optical Properties for AuAg/Glass Material

  • A. V. Skidanenko
  • L. A. AvakyanEmail author
  • E. A. Kozinkina
  • L. A. Bugaev
OPTICAL PROPERTIES
  • 1 Downloads

Abstract

Optical extinction spectra calculated via multisphere T-matrices for nanoparticles with different concentrations of metals and different architectures (core–shell, inverse core–shell, or alloy) are considered. A method is proposed for determination of architecture of nanoparticles (core–shell or alloy) from only data on the position of plasmon resonance and composition of components. The use of an optical spectrum fitting technique to the spectra of monodisperse noninteracting bimetallic nanoparticles with a predetermined structure appeared to be effective for the determination of the internal structure of nanoparticles, except large nanoparticles with a radius of more than 60 nm containing less than ∼25% silver atoms.

Notes

ACKNOWLEDGMENTS

This work was supported by the Grant of the Southern Federal University (VnGr-07/201706).

REFERENCES

  1. 1.
    D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzan, Adv. Opt. Mater. 3, 602 (2015). doi 10.1002/adom.201500053CrossRefGoogle Scholar
  2. 2.
    I. A. Gladskikh and T. A. Vartanyan, Opt. Spectroscopy 121, 851 (2016). doi 10.1134/S0030400X16120109ADSCrossRefGoogle Scholar
  3. 3.
    V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, J. Phys.: Condens. Matter 29, 203002 (2017).ADSGoogle Scholar
  4. 4.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).CrossRefGoogle Scholar
  5. 5.
    T. Hartman, C. S. Wondergem, N. Kumar, A. van den Berg, and B. M. Weckhuysen, J. Phys. Chem. Lett. 7, 1570 (2016). doi 10.1021/acs.jpclett.6b00147CrossRefGoogle Scholar
  6. 6.
    L.-B. Luo, K. Zheng, C.-W. Ge, Y.-F. Zou, R. Lu, Y. Wang, D.-D. Wang, T.-F. Zhang, and F.-X. Liang, Plasmonics 11, 619 (2016). doi 10.1007/s11468-015-0091-3CrossRefGoogle Scholar
  7. 7.
    R. Ghosh Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012). doi 10.1021/cr100449nCrossRefGoogle Scholar
  8. 8.
    V. Guterman, S. Belenov, A. Pakharev, M. Min, N. Tabachkova, E. Mikheykina, L. Vysochina, and T. Lastovina, Int. J. Hydrogen Energy 41, 1609 (2016). doi 10.1016/j.ijhydene.2015.11.002CrossRefGoogle Scholar
  9. 9.
    T. Dang-Bao, D. Pla, I. Favier, and M. Gomez, Catalysis 7 (2017). doi 10.3390/catal7070207Google Scholar
  10. 10.
    L. Lu, G. Burkey, I. Halaciuga, and D. V. Goia, J. Colloid Interface Sci. 392, 90 (2013). doi 10.1016/j.jcis.2012.09.057ADSCrossRefGoogle Scholar
  11. 11.
    J. Haug, H. Kruth, M. Dubiel, H. Hofmeister, S. Haas, D. Tatchev, and A. Hoell, Nanotechnology 20, 505705 (2009).CrossRefGoogle Scholar
  12. 12.
    G. N. Makarov, Phys. Usp. 56, 643 (2013). doi 10.3367/UFNr.0183.201307a.0673ADSCrossRefGoogle Scholar
  13. 13.
    J. Deng, J. Du, Y. Wang, Y. Tu, and J. Di, Electrochem. Commun. 13, 1517 (2011). doi 10.1016/j.elecom.2011.10.010CrossRefGoogle Scholar
  14. 14.
    P. Dong, Y. Lin, J. Deng, and J. Di, ACS Appl. Mater. Interfaces 5, 2392 (2013). doi 10.1021/am4004254CrossRefGoogle Scholar
  15. 15.
    S. M. Morton, D. W. Silverstein, and L. Jensen, Chem. Rev. 111, 3962 (2011). doi 10.1021/cr100265fCrossRefGoogle Scholar
  16. 16.
    S. Bernadotte, F. Evers, and C. R. Jacob, J. Phys. Chem. C 117, 1863 (2013). doi 10.1021/jp3113073CrossRefGoogle Scholar
  17. 17.
    P. Koval, F. Marchesin, D. Foerster, and D. Sanchez-Portal, J. Phys.: Condens. Matter 28, 214001 (2016).ADSGoogle Scholar
  18. 18.
    N. A. Olekhno, Y. M. Beltukov, and D. A. Parshin, Phys. Solid State 57, 2479 (2015). doi 10.1134/S1063783415120252ADSCrossRefGoogle Scholar
  19. 19.
    A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. D. Angelis, E. D. Fabrizio, and R. P. Zaccaria, Materials 6, 4879 (2013). doi 10.3390/ma6114879ADSCrossRefGoogle Scholar
  20. 20.
    P. Jahanshahi, M. Ghomeishi, and F. R. M. Adikan, Sci. World J. 2014, 6 (2014). doi 10.1155/2014/503749Google Scholar
  21. 21.
    A. Derkachova, K. Kolwas, and I. Demchenko, Plasmonics (Norwell, MA) 11, 941 (2016). doi 10.1007/s11468-015-0128-7CrossRefGoogle Scholar
  22. 22.
    C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, New J. Phys. 4, 93 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    X. Fan, W. Zheng, and D. J. Singh, Light Sci. Appl. 3, e179 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    A. Crut, P. Maioli, F. Vallée, and N. D. Fatti, J. Phys.: Condens. Matter 29, 123002 (2017).ADSGoogle Scholar
  25. 25.
    S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Nano Lett. 5, 515 (2005). doi 10.1021/nl050062tADSCrossRefGoogle Scholar
  26. 26.
    A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Timedomain Method (Artech House, London, 2005).zbMATHGoogle Scholar
  27. 27.
    J. Jin, The Finite Element Method in Electromagnetics (Wiley, Hoboken, NJ, 2015).Google Scholar
  28. 28.
    B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994). doi 10.1364/JOSAA.11.001491ADSCrossRefGoogle Scholar
  29. 29.
    P. J. Flatau and B. T. Draine, Opt. Express 20, 1247 (2012). doi 10.1364/OE.20.001247ADSCrossRefGoogle Scholar
  30. 30.
    O. Zhuromskyy, Crystals 7, 1 (2017). doi 10.3390/cryst7010001CrossRefGoogle Scholar
  31. 31.
    W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fer-nig, Anal. Chem. 79, 4215 (2007). doi 10.1021/ac0702084CrossRefGoogle Scholar
  32. 32.
    P. N. Njoki, I.-I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, J. Phys. Chem. C 111, 14664 (2007). doi 10.1021/jp074902zCrossRefGoogle Scholar
  33. 33.
    M. Heinz, V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, E. V. Ishenko, L. A. Avakyan, Y. V. Zubavichus, J. Ihlemann, J. Meinertz, E. Pippel, M. Dubiel, and L. A. Bugaev, J. Alloys Compd. 681, 307 (2016). doi 10.1016/j.jallcom.2016.04.214CrossRefGoogle Scholar
  34. 34.
    Y.-L. Xu, Appl. Opt. 34, 4573 (1995). doi 10.1364/AO.34.004573ADSCrossRefGoogle Scholar
  35. 35.
    G. Gouesbet and G. Grehan, J. Opt. A 1, 706 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    P. C. Waterman, Proc. IEEE 53, 805 (1965). doi 10.1109/PROC.1965.4058CrossRefGoogle Scholar
  37. 37.
    M. I. Mishchenko, J. Opt. Soc. Am. A 8, 871 (1991). doi 10.1364/JOSAA.8.000871ADSCrossRefGoogle Scholar
  38. 38.
    D. W. Mackowski and M. I. Mishchenko, J. Opt. Soc. Am. A 13, 2266 (1996). doi 10.1364/JOSAA.13.002266ADSCrossRefGoogle Scholar
  39. 39.
    N. G. Khlebtsov, J. Quant. Spectrosc. Rad. Transfer 123, 184 (2013). doi 10.1016/j.jqsrt.2012.12.027ADSCrossRefGoogle Scholar
  40. 40.
    M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, G. Videen, and T. Wriedt, J. Quant. Spectrosc. Rad. Transfer 178, 276 (2016). doi 10.1016/j.jqsrt.2015.11.005ADSCrossRefGoogle Scholar
  41. 41.
    M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, G. Videen, and T. Wriedt, J. Quant. Spectrosc. Rad. Transfer 202, 240 (2017). doi 10.1016/j.jqsrt.2017.08.007ADSCrossRefGoogle Scholar
  42. 42.
    L. Avakyan, M. Heinz, A. Skidanenko, K. A. Yablunovskiy, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, and L. Bugaev, J. Phys.: Condens. Matter 30, 045901 (2018). doi 10.1088/1361-648X/aa9fccADSGoogle Scholar
  43. 43.
    C. Zhang, B.-Q. Chen, Z.-Y. Li, Y. Xia, and Y.‑G. Chen, J. Phys. Chem. C 119, 1683616845 (2015). doi 10.1021/acs.jpcc.5b04232Google Scholar
  44. 44.
    D. Mackowski and M. Mishchenko, J. Quant. Spectrosc. Rad. Transfer 112, 2182 (2011). doi 10.1016/j.jqsrt.2011.02.019ADSCrossRefGoogle Scholar
  45. 45.
    L. A. Avakyan, Python Wrapper for Multiple Sphere T‑Matrix (MSTM) Code to Calculate Surface Plasmon    Resonance (SPR) Spectrum, 2017. https://github.com/lavakyan/mstmspectrum.Google Scholar
  46. 46.
    D. Rioux, S. Vallieres, S. Besner, P. Munoz, E. Mazur, and M. Meunier, Adv. Opt. Mater. 2, 176 (2014). doi 10.1002/adom.201300457CrossRefGoogle Scholar
  47. 47.
    A. R. Denton and N. W. Ashcroft, Phys. Rev. A 43, 3161 (1991). doi 10.1103/physreva.43.3161ADSCrossRefGoogle Scholar
  48. 48.
    S. Ristig, O. Prymak, K. Loza, M. Gocyla, W. Meyer-Zaika, M. Heggen, D. Raabe, and M. Epple, J. Mater. Chem. B 3, 4654 (2015). doi 10.1039/c5tb00644aCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Skidanenko
    • 1
  • L. A. Avakyan
    • 1
    Email author
  • E. A. Kozinkina
    • 1
  • L. A. Bugaev
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations