Physics of the Solid State

, Volume 60, Issue 12, pp 2524–2531 | Cite as

Effect of Sequential Heat Impacts on the Formation of a Stable State of the xLPM–(1 – x)PT Multiferroic Composites

  • E. A. MikhalevaEmail author
  • I. N. Flerov
  • M. V. Gorev
  • A. V. Shabanov


The effect of thermal cycling and sintering temperature on the chemical and thermodynamic stability of the bulk multiferroic xLa0.7Pb0.3MnO3–(1 – x)PbTiO3 quasi-ceramic and ceramic composites has been experimentally investigated. It is shown that the limiting temperature of the long-term sample firing should not exceed 1070 K. It has been found that sintering at this temperature and/or short-term exposure of the samples at higher temperatures (up to 1220 K) significantly increase the sample compactness, stabilize the thermal expansion, and enhance the quality of the composites. It has been established that the component grain integrity is violated by shrinkage of the samples and a sharp change in their volume during the phase transition of a ferroelectric component.



This study was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Territorial Foundation for Support of the Scientific and R&D Activity, project no. 17-42-240076 “Complex Approach to Searching and Development of Promising Solid-State Ferroic Cooling Agents Based on the Single- and Multicaloric Effects.”

The authors thank M.S. Molokeev for structural characterization of the composites.


  1. 1.
    H. Schmid, Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
  2. 2.
    C.-W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, and C. X. Xiong, Appl. Phys. Lett. 81, 3831 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    S. A. Gridnev, Yu. E. Kalinin, A. V. Kalgin, and E. S. Grigor’ev, Phys. Solid State 57, 1372 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London, U.K.) 442, 759 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47, 416 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    M. I. Bichurin and V. M. Petrov, Low Temp. Phys. 36, 544 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    H. S. Bhattia, S. T. Hussaina, F. A. Khanb, and Sh. Hussain, Appl. Surf. Sci. 367, 291 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    J. F. Scott and R. Blinc, J. Phys.: Condens. Matter 23, 113202 (2011).ADSGoogle Scholar
  9. 9.
    N. Aparnadevi, K. S. Kumar, M. Manikandan, P. Joseph, and C. Venkateswaran, J. Appl. Phys. 120, 034101 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Kalgin, S. A. Gridnev, and A. A. Amirov, Phys. Solid State 60, 1239 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    M. M. Vopson, Solid State Commun. 152, 2067 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    I. N. Flerov, Izv. SPb. Univ. Nizkotemp. Pishchev. Tekhnol., No. 1, 41 (2008).Google Scholar
  13. 13.
    E. Mikhaleva, I. Flerov, A. Kartashev, M. Gorev, A. Cherepakhin, K. Sablina, N. Mikhashenok, N. Vol-kov, and A. Shabanov, J. Mater. Res. 28, 3322 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    E. Mikhaleva, I. Flerov, M. Gorev, M. Molokeev, A. Cherepakhin, A. Kartashev, N. Mikhashenok, and K. Sablina, Phys. Solid State 54, 1832 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Kartashev, E. A. Mikhaleva, M. V. Gorev, E. V. Bog-danov, A. V. Cherepakhin, K. A. Sablina, N. V. Mi-khashonok, I. N. Flerov, and N. V. Volkov, J. Appl. Phys. 113, 073901 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Mikhaleva
    • 1
    Email author
  • I. N. Flerov
    • 1
    • 2
  • M. V. Gorev
    • 1
    • 2
  • A. V. Shabanov
    • 1
  1. 1.Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, KrasnoyarskRussia
  2. 2.Siberian Federal University, Institute of Engineering Physics and Radio ElectronicsKrasnoyarskRussia

Personalised recommendations