Physics of the Solid State

, Volume 60, Issue 12, pp 2541–2545 | Cite as

Polarization Kinetics in Transparent Pb(Mg1/3Nb2/3)O3–23Pb(Zr0.53Ti0.47)O3 Ceramic

  • L. S. KamzinaEmail author
  • L. A. Kulakova
  • G. Li


The polarization kinetics in a transparent Pb(Mg1/3Nb2/3)O3–23Pb(Zr0.53Ti0.47)O3 ferroceramic is investigated in the electric fields of 0 < E < 6 kV/cm. The optical transmittance, dielectric, and acoustic properties of ferroceramics are measured at room temperature. The dielectric and acoustic characteristics are found to instantly switch even in fields below the coercive, due to the emergence of a partially ordered ferroelectric phase. Furthermore, the polarized phase arisen in the electric field is not completely stable.



  1. 1.
    L. E. Cross, Mater. Chem. Phys. 43, 108 (1996).CrossRefGoogle Scholar
  2. 2.
    G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
  3. 3.
    R. Shannigrahi, R. N. P. Choudhary, and H. N. Acharya, Mater. Lett. 39, 318 (1999).CrossRefGoogle Scholar
  4. 4.
    S. K. S. Parashar, R. N. P. Choudhary, and B. S. Mur-ty, J. Appl. Phys. 94, 6091 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    R. Yimnirun, S. Ananta, E. Meechoowas, and S. Wonsaenmai, J. Phys. 36, 1615 (2003).ADSMathSciNetGoogle Scholar
  6. 6.
    L. X. He, M. Gao, C. E. Li, W. M. Zhu, and H. X. Yan, J. Eur. Ceram. Soc. 21, 703 (2001).CrossRefGoogle Scholar
  7. 7.
    R. Yimnirun, S. Ananta, P. Laoratakul, and S. Song-klanakarin, J. Sci. Technol. 26, 529 (2004).Google Scholar
  8. 8.
    Shujun Zhang, Sung-Min Lee, Dong-Ho Kim, Ho-Yong Lee, and Th. R. Shrout, J. Am. Ceram. Soc. 90, 3859 (2007).Google Scholar
  9. 9.
    S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics 37, 579 (1981).CrossRefGoogle Scholar
  11. 11.
    D. Vieland and J. Powers, J. Appl. Phys. 89, 1820 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    G. Singh and V. S. Tiwari, J. Appl. Phys. 101, 014115 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    W. Ruan, G. R. Li, J. T. Zeng, L. S. Kamzina, H. R. Zeng, L. Y. Zheng, and A. L. Ding, J. Am. Ceram. Soc. 95, 2103 (2012).CrossRefGoogle Scholar
  14. 14.
    L. S. Kamzina, Wei Ruan, Guorong Li, and Jiangtao Zeng, Phys. Solid State 54, 2024 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    W. Zhao, W. Ruan, J. Zeng, L. Huang, K. Zhao, L. Zheng, H. Zeng, Y. Zhou, H. Yang, X. Ruan, and Guorong Li, Appl. Phys. Lett. 104, 062907 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    E. V. Colla, E. Y. Koroleva, N. M. Okuneva, and S. B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    E. V. Colla, N. Jurik, Y. Liu, M. E. X. Delgado, M. B. Weissman, D. D. Vieland, and Z.-G. Ye, J. Appl. Phys. 113, 184104 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    L. S. Kamzina and L. A. Kulakova, Phys. Solid State 59, 298 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. Koval, C. Alemany, J. Briancin, H. Brunckova, and K. Saksl, J. Eur. Ceram. Soc. 23, 1157 (2003).CrossRefGoogle Scholar
  20. 20.
    L. S. Kamzina, L. A. Kulakova, and H. Luo, Phys. Solid State 56, 1872 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Shanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations