Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2370–2380 | Cite as

Effect of Annealing in a Ferromagnetic State on the Structure of an Fe–18 at % Ga Alloy

  • Yu. P. Chernenkov
  • N. V. ErshovEmail author
  • V. A. Lukshina
METALS

Abstract

The atomic structure of the iron–gallium alloy containing 18 at % Ga has been studied by X-ray diffraction. The samples were annealed in the paramagnetic (T > TC) and ferromagnetic (T < TC) state. In the first case, the structural state was fixed by quenching from the annealing temperature into water; in the second case, the structural state was obtained by slow cooling. The structural studies of the single-crystal samples were conducted on a four-circle X-ray diffractometer at room temperature. From the X-ray diffraction data, it follows that the alloy, independently on the heat treatment, contains B2 clusters, i.e., locally ordered regions with the CsCl-type structure observed in alloys of iron with silicon (to 10 at % Si) and aluminum (7 at % Al) before. In addition to the B2‑clusters, regions with the D03 short-range order are observed in the quenched sample; the sizes of these regions significantly increases after annealing in the ferromagnetic state, i.e., a long-range order forms. The relation of the fine structural changes in the alloy due to various heat treatments with its magnetoelastic and magnetostriction properties is discussed.

Notes

ACKNOWLEDGMENTS

This work was carried out in the framework of the state task (the theme “Magnit” No. AAAA-A18-118020290129-5) and was supported by the program of the Ural Branch of the Russian Academy of Sciences (project no. 18-10-2-5) and the Russian Foundation for Basic Research (project no. 18-02-00391).

REFERENCES

  1. 1.
    J. R. Cullen, A. E. Clark, M. Wun-Fogle, J. B. Restor, and T. A. Lograsso, J. Magn. Magn. Mater. 226–230, 948 (2001). doi 10.1016/S0304-8853(00)00612-0CrossRefGoogle Scholar
  2. 2.
    A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, J. Appl. Phys. 93, 8621 (2003). doi 10.1063/1.1540130ADSCrossRefGoogle Scholar
  3. 3.
    O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, and K. Ishida, J. Alloys Compd. 347, 198 (2002). doi 10.1016/S0925-8388(02)00791-0CrossRefGoogle Scholar
  4. 4.
    M. V. Petrik, O. I. Gorbatov, and Yu. N. Gornostyrev, JETP Lett. 98, 809 (2013). doi 10.7868/S0370274X13240107ADSCrossRefGoogle Scholar
  5. 5.
    R. Wu, J. Appl. Phys. 91, 7358 (2002). doi 10.1063/1.1450791ADSCrossRefGoogle Scholar
  6. 6.
    J. Cullen, P. Zhao, and M. Wuttig, J. Appl. Phys. 101, 123922 (2007). doi 10.1063/1.2749471ADSCrossRefGoogle Scholar
  7. 7.
    J. Boisse, H. Zapolsky, and A. G. Khachaturyan, Acta Mater. 59, 2656 (2011). doi 10.1016/j.Actamat.2011.01.002CrossRefGoogle Scholar
  8. 8.
    T. A. Lograsso and E. M. Summers, Mater. Sci. Eng. A 416, 240 (2006). doi 10.1016/j.msea.2005.10.035CrossRefGoogle Scholar
  9. 9.
    M. Huang and T. A. Lograsso, Appl. Phys. Lett. 95, 171907 (2009). doi 10.1063/1.3254249ADSCrossRefGoogle Scholar
  10. 10.
    Yu. P. Chernenkov, N. V. Ershov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, Phys. B (Amsterdam, Neth.) 396, 220 (2007). doi 10.1016/j.physb.2007.04.008Google Scholar
  11. 11.
    N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 51, 441 (2009). doi 10.1134/S1063783409030019ADSCrossRefGoogle Scholar
  12. 12.
    N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 54, 1935 (2012). doi 10.1134/S1063783412090107ADSCrossRefGoogle Scholar
  13. 13.
    N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, Phys. Solid State 60, 1661 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Phys. Met. Metallogr. 100, 235 (2005).Google Scholar
  15. 15.
    C. J. Quinn, P. J. Grundy, and N. J. Mellors, J. Magn. Magn. Mater. 361, 74 (2014). doi 10.1016/j.JMMM.2014.02.004ADSCrossRefGoogle Scholar
  16. 16.
    B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, New York, 2001).Google Scholar
  17. 17.
    Th. Proffen and R. B. Neder, J. Appl. Crystallogr. 30, 171 (1997). doi 10.1107/S002188989600934XCrossRefGoogle Scholar
  18. 18.
    O. I. Gorbatov, A. R. Kuznetsov, Yu. N. Gornostyrev, A. V. Ruban, N. V. Ershov, V. A. Lukshina, Yu. P. Chernenkov, and V. I. Fedorov, J. Exp. Theor. Phys. 112, 848 (2011). doi 10.1134/S1063776111040066ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. P. Chernenkov
    • 1
  • N. V. Ershov
    • 2
    Email author
  • V. A. Lukshina
    • 2
    • 3
  1. 1.Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute” GatchinaRussia
  2. 2.Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal University Named after the First President of Russia B.N. YeltsinYekaterinburgRussia

Personalised recommendations