Physics of the Solid State

, Volume 60, Issue 12, pp 2498–2506 | Cite as

Coupled Electronic–Nuclear Magnetostatic Oscillations in Magnetic Materials

  • M. A. BorichEmail author
  • S. P. Savchenko
  • A. P. Tankeyev


Magnetization dynamics in spheroidal ferromagnetic samples is studied theoretically. It is shown that, in a magnetostatic approximation, electronic-nuclear magnetostatic modes with a discrete spectrum of eigen oscillations exist in such samples. The structure and the field dependence of the frequencies of these oscillations are substantially dependent on the parameter of the spheroid shape that is the ratio of it’s axes and also on the external magnetic field value. In a certain region of values of these parameters, the dependence of the eigenfrequencies of the system on them becomes nontrivial. The external field strength and the sample shape determine not only the eigenfrequencies in the system, but also the number of the eigenmodes. In addition, for each of the eigenmodes, there exists a “forbidden” region of magnetic fields and shape parameters in which this mode cannot be observed.



The work was supported by the State contract of the Federal Agency of Scientific Organizations, issue “Spin”, no. AAA-A18-118020290104-2.


  1. 1.
    E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro and Antiferromagnetics (Nauka, Moscow, 1969; Israel Program of Scientific Transl., Jerusalem, 1972).Google Scholar
  2. 2.
    M. I. Kurkin and E. A. Turov, NMR in Magnetically Ordered Substances and its Applications (Nauka, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    D. Feldmann, H. R. Kirchmayr, A. Schmolz, and M. Velicesku, IEEE Trans. Magn. Magn. 7, 61 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    V. I. Tsifrinovich, Sov. Phys. JETP 65, 783 (1987).Google Scholar
  5. 5.
    M. A. Borich, Yu. M. Bunkov, M. I. Kurkin, and A. P. Tankeyev, JETP Lett. 105, 21 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    L. V. Abdurakhimov, M. A. Borich, Yu. M. Bunkov, R. R. Gazizulin, D. Konstantinov, M. I. Kurkin, and A. P. Tankeyev, Phys. Rev. B 97, 024425 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].Google Scholar
  8. 8.
    V. G. Shavrov and V. I. Shcheglov, Magnetostatic Waves in Inhomogeneous Fields (Fizmatlit, Moscow, 2016) [in Russian].Google Scholar
  9. 9.
    A. P. Tankeev, A. G. Shagalov, M. A. Borich, and V. V. Smagin, Phys. Met. Metallogr. 93, 525 (2002).Google Scholar
  10. 10.
    A. P. Tankeev, A. G. Shagalov, M. A. Borich, and V. V. Smagin, Phys. Met. Metallogr. 95, 6 (2003).Google Scholar
  11. 11.
    M. A. Borich, A. V. Kobelev, V. V. Smagin, and A. P. Tankeyev, J. Phys.: Condens. Matter 15, 8543 (2003).ADSGoogle Scholar
  12. 12.
    O. Yalçin, Ferromagnetic Resonance–Theory and Applications (InTech, Rijeka, Croatia, 2013).Google Scholar
  13. 13.
    A. Layadi, AIP Adv. 5, 057113 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    A. G. Gurevich, Magnetic Oscillations and Waves (Fizmatlit, Moscow, 1994) [in Russian].Google Scholar
  15. 15.
    R. Urban, A. Putilin, P. E. Wigen, S.-H. Liou, M. C. Cross, P. C. Hammel, and M. L. Roukes, Phys. Rev. B 73, 212410 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    D. E. Beeman, H. J. Fink, and D. Shaltel, Phys. Rev. 147, 454 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    P. G. de Gennes, P. A. Pincus, F. Hartman-Boutron, and G. M. Winter, Phys. Rev. 129, 1105 (1963).ADSCrossRefGoogle Scholar
  18. 18.
    T. G. Blocker, Phys. Rev. 154, 446 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    A. R. King, V. Jaccarino, and S. M. Rezende, Phys. Rev. Lett. 37, 533 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Borich, S. P. Savchenko, and A. P. Tankeyev, Magn. Reson. Solids, El. J. 20, 18104 (2018).Google Scholar
  21. 21.
    L. R. Walker, Phys. Rev. 105, 390 (1957).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Borich
    • 1
    • 2
    Email author
  • S. P. Savchenko
    • 1
  • A. P. Tankeyev
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations