Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2656–2662 | Cite as

Effect of an Electric Field and a Temperature Gradient on the Formation of a Hydrodynamic Flow in a Thin Nematic Capillary

  • A. V. ZakharovEmail author
  • S. V. Pasechnik
  • G. I. Maksimochkin
POLYMERS
  • 1 Downloads

Abstract

A theoretical description of the principles of nonmechanical transportation of microliter volumes of a liquid crystal (LC) encapsulated in a thin capillary is proposed. By numerical methods within a nonlinear generalization of the classical Ericksen–Leslie theory, various regimes of formation of a hydrodynamic flow in a uniformly oriented LC cavity under the action of a temperature gradient and a double electrostatic layer naturally arising at the LC/solid interface are investigated. The sizes of an LC capillary and the parameters of the necessary thermal effect capable of initiating a flow of the LC phase in the horizontal direction are found.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 16-02-00041a) and the Ministry of Education and Science of the Russian Federation (grants nos. 3.11888.2018/11.12 and 3.9585.2017/8.9).

REFERENCES

  1. 1.
    R. V. Shock J. Y. Han, and P. Remind, Rev. Mod. Rhys. 80, 839 (2008).Google Scholar
  2. 2.
    W. Sparreboom, A. van den Berg, and J. S. T. Eijkel, New. J. Phys. 12, 0115004 (2010).CrossRefGoogle Scholar
  3. 3.
    P. Popov, L. W. Hanaker, M. Mirheydari, E. K. Mann, and A. Jakli, Sci. Rep. 7, 1603 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    J. Beeckmann, I. Nys, O. Willekens, and K. Neyts, J. Appl. Phys. 121, 023106 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, Opt. Express 18, 13981 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    H. C. Lin and Y. H. Lin, Opt. Express 20, 2045 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Zakharov and A. A. Vakulenko, Phys. Fluids 27, 062001 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Zakharov and P. V. Maslennikov, Phys. Rev. E 96, 052705 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    A. Yu. Malyuk and N. A. Ivanova, Appl. Phys. Lett. 112, 103701 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Zakharov and A. A. Vakulenko, J. Chem. Phys. 127, 084907 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    J. N. Israellachvili, Intermolecular and Surface Forces (Academic, London, 1992).Google Scholar
  12. 12.
    J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).CrossRefGoogle Scholar
  13. 13.
    F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).CrossRefGoogle Scholar
  14. 14.
    R. S. Akopyan, R. B. Alaverdian, E. A. Santrosian, and Y. S. Chilingarian, J. Appl. Phys. 90, 3371 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Zakharov and A. A. Vakulenko, Phys. Rev. E 80, 031708 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    I. S. Berezin and N. R. Zhidkov, Calculation Methods (Fizmatgiz, Moscow, 1964) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Zakharov
    • 1
    Email author
  • S. V. Pasechnik
    • 2
  • G. I. Maksimochkin
    • 2
  1. 1.Institute for Problems in Mechanical Engineering, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Technological University (MIREA)MoscowRussia

Personalised recommendations