Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2344–2348 | Cite as

Magnetic Susceptibility and Spin Fluctuations in the Nonsuperconducting Phase of PuCoGa5

  • A. G. VolkovEmail author
  • A. A. PovznerEmail author
METALS
  • 5 Downloads

Abstract

Within the Hubbard model with allowance for Hund’s and spin–orbit interactions, the concepts of thermal spin fluctuations in a strongly correlated system of f electrons in PuCoGa5 are developed. The effect of fluctuations of the spin magnetic moments of different orbitals on the spin–orbit splitting of the f  electron spectrum is considered. The mean square magnetic moment obtained in this case makes it possible to describe the observed temperature dependence of the magnetic susceptibility (χ(T)) of PuCoGa5 near and above the electron pairing temperature. Estimates of the radius of spin correlations correspond in order of magnitude to the sizes of Cooper pairs in superconductors with the d symmetry of the order parameter. In the high-temperature region, the magnetic susceptibility obeys the Curie–Weiss law. With decreasing temperature, when approaching the pairing temperature, the ferromagnetic instability is suppressed and the temperature maximum of χ(T) appears.

Notes

REFERENCES

  1. 1.
    J. L. Sarrao, L. A. Morales, J. D. Thompson, B. L. Scott, G. R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G. H. Lander, Nature (London, U.K.) 420, 297 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    A. Hiess, A. Stunault, E. Colineau, J. Rebizant, F. Wastin, R. Caciuffo, and G. H. Lander, Phys. Rev. Lett. 100, 076403 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    P. Boulet, E. Colineau, F. Wastin, J. Rebizant, P. Javorsky, G. H. Lander, and J. D. Thompson, Phys. Rev. B 72, 104508 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    D. Daghero, M. Tortello, G. A. Ummarino, J.‑C. Griveau, E. Colineau, R. Eloirdi, A. B. Shick, J. Kolorenc, A. I. Lichtenstein, and R. Caciuffo, Nat. Commun. 3, 786 (2012). doi 10.1038/ncomms1785CrossRefGoogle Scholar
  5. 5.
    C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    Jian-Xin Zhu, P. H. Tobash, E. D. Bauer, F. Ronning, B. L. Scott, K. Haule, G. Kotliar, R. C. Albers, and J. M. Wills, Eur. Phys. Lett. 97, 57001 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    W. H. Brito, S. Choi, and G. Kotliar, arXiv:1710.06956v1 [condmat.str-el].Google Scholar
  8. 8.
    J. D. Thompson, J. L. Sarrao, L. A. Morales, F. Wastin, and P. Boulet, Phys. C (Amsterdam, Neth.) 412414, 10 (2004).Google Scholar
  9. 9.
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Hum-phreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    J. A. Hertz and M. A. Klenin, Phys. Rev. B 10, 1084 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    T. Moriya, Electron Correlations and Magnetism in Narrow Band Systems (Springer, Berlin, Heidelberg, 1985).Google Scholar
  12. 12.
    R. Eloirdi, C. Giacobbe, P. Amador Celdran, N. Magnani, G. H. Lander, J.-C. Griveau, E. Colineau, K. Miyake, and R. Caciuffo, Phys. Rev. B 95, 094517 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ural Federal University Named after the First President of Russia B.N. YeltsinYekaterinburgRussia

Personalised recommendations