Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2616–2622 | Cite as

Modifying the Structure of Multiwalled Carbon Nanotubes with Continuous and Pulsed Ion Beams

  • P. M. KorusenkoEmail author
  • S. N. Nesov
  • S. N. Povoroznyuk
  • V. V. Bolotov
  • E. V. Knyazev
  • A. I. Pushkarev
  • D. A. Smirnov
LOW-DIMENSIONAL SYSTEMS
  • 2 Downloads

Abstract

Changes in the local atomic and electronic structure and the chemical state of the surface of multiwalled carbon nanotubes (MWCNTs) irradiated with continuous and pulsed ion beams are studied using transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge spectroscopy. It is demonstrated that changes in the structure and the chemical state of MWCNTs under continuous irradiation with argon ions are attributable to the radiation-induced defect formation. When a pulsed carbon–proton beam is used, thermal effects exert a considerable influence on the structure of carbon nanotubes. The obtained results suggest that continuous and pulsed ion beams are suitable for targeted functionalization of physical and chemical properties of MWCNTs.

Notes

ACKNOWLEDGMENTS

This study was conducted under state assignment for the Omsk Scientific Center (Siberian Branch, Russian Academy of Sciences) in accordance with the Program of Fundamental Research of National Academies of Sciences for 2013–2020 (project no. II.9.2.1, state registration no. АААА-А17-117041210227-8) and was supported in part by the Russian Foundation for Basic Research, project nos. 18-32-00233 mol_a (examination of the structure of MWCNTs irradiated by argon ions) and 16-08-00763 a (TEM studies).

The authors wish to thank Yu.A. Sten’kin for synthesizing the initial MWCNT samples, the management of the Helmholtz-Zentrum Berlin für Materialien und Energie and coordinators of the Russian–German beamline at BESSY II (Berlin, Germany), and the management of the Omsk Shared Use Center (Siberian Branch, Russian Academy of Sciences) for providing the equipment for TEM studies.

REFERENCES

  1. 1.
    S. Majumdar, P. Nag, and P. Devi, Mater. Chem. Phys. 147, 79 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Liu, W. Zhang, H. Yu, L. Gao, Z. Song, S. Xu, M. Li, Y. Wang, H. Song, and J. Tang, Appl. Mater. Interfaces 8, 840 (2016).CrossRefGoogle Scholar
  3. 3.
    A. G. Kurenya, L. G. Bulusheva, I. P. Asanov, O. V. Se-delnikova, and A. V. Okotrub, Phys. Status Solidi B 252, 2524 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    R. Tang, Y. Shi, Z. Hou, and L. Wei, Sensors 17, 882 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Rahmandoust and M. R. Ayatollahi, Adv. Struct. Mater. 39, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    E. Abdel-Fattah, D. Ogawa, and K. Nakamura, J. Phys. D: 50, 265301 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and B. L. Yakushin, Perspective Radiation-Beam Technologies of Material Processing (Kruglyi God, Moscow, 2001) [in Russian].Google Scholar
  8. 8.
    Yu. V. Trushin, Physical Science of Materials (Nauka, St. Petersburg, 2000) [in Russian].Google Scholar
  9. 9.
    M. Scardamaglia, C. Struzzi, F. J. Aparicio Rebollo, P. de Marco, P. R. Mudimela, J.-F. Colomer, M. Amati, L. Gregoratti, L. Petaccia, R. Snyders, and C. Bittencourt, Carbon 83, 118 (2015).CrossRefGoogle Scholar
  10. 10.
    P. M. Korusenko, V. V. Bolotov, S. N. Nesov, S. N. Povoroznyuk, and I. P. Khailov, Nucl. Instrum. Methods Phys. Res., Sect. B 358, 131 (2015).Google Scholar
  11. 11.
    V. I. Boiko, A. N. Valyaev, and A. D. Pogrebnyak, Phys. Usp. 42, 1139 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Isakova, A. Pushkarev, I. Khailov, and H. Zhong, Rev. Sci. Instrum. 86, 073305 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. Phys. Res., Sect. B 268, 1818 (2010).Google Scholar
  14. 14.
    S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).CrossRefGoogle Scholar
  15. 15.
    L. G. Bulusheva, A. V. Okotrub, Y. V. Fedoseeva, A. G. Kurenya, I. P. Asanov, O. Y. Vilkov, A. A. Koόs, and N. Grobert, Phys. Chem. Chem. Phys. 17, 23741 (2015).CrossRefGoogle Scholar
  16. 16.
    V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk, and E. V. Knyazev, Nucl. Instrum. Methods Phys. Res., Sect. B 337, 1 (2014).Google Scholar
  17. 17.
    V. V. Bolotov, V. E. Kan, and E. V. Knyazev, Proc. Eng. 152, 701 (2016).CrossRefGoogle Scholar
  18. 18.
    S. N. Nesov, P. M. Korusenko, S. N. Povoroznyuk, V. V. Bolotov, E. V. Knyazev, and D. A. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. B 410, 222 (2017).Google Scholar
  19. 19.
    S. N. Nesov, P. M. Korusenko, V. V. Bolotov, S. N. Povoroznyuk, and D. A. Smirnov, Phys. Solid State 59, 2030 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    M. M. Brzhezinskaya, A. S. Vinogradov, A. V. Krestinin, G. I. Zvereva, A. P. Kharitonov, and I. I. Kulakova, Phys. Solid State 52, 876 (2010).CrossRefGoogle Scholar
  21. 21.
    Yu. V. Fedoseeva, A. V. Okotrub, L. G. Bulusheva, E. A. Maksimovskiy, B. V. Senkovskiy, Yu. M. Borz-dov, and Yu. N. Palyanov, Diamond Rel. Mater. 70, 46 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    Yu. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, D. V. Vyalikh, Junping Huo, Huaihe Song, Jisheng Zhou, and Xiaohong Chen, Mater. Chem. Phys. 135, 235 (2012).CrossRefGoogle Scholar
  23. 23.
    R. P. Gandhiraman, D. Nordlund, C. Javier, J. E. Ko-ehne, B. Chen, and M. Meyyappan, J. Phys. Chem. C 118, 18706 (2014).CrossRefGoogle Scholar
  24. 24.
    V. V. Bolotov, P. M. Korusenko, S. N. Nesov, and S. N. Povoroznyuk, Phys. Solid State 56, 835 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, J. Phys. Chem. C 115, 17009 (2011).CrossRefGoogle Scholar
  26. 26.
    S. C. Ray, Z. N. Tetana, R. Erasmus, W.-F. Pong, and N. J. Coville, Appl. Phys. A 115, 153 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    K. L. Klein, A. V. Melechko, T. E. McKnight, S. T. Retterer, P. D. Rack, J. D. Fowlkes, D. C. Joy, and M. L. Simpson, J. Appl. Phys. 103, 061301 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    G. Yang, B. Kim, K. Kim, J. W. Han, and J. Kim, RSC Adv. 5, 31861 (2015).Google Scholar
  29. 29.
    C.-H. Chuang, S. C. Ray, D. Mazumder, S. Sharma, A. Ganguly, P. Papakonstantinou, J.-W. Chiou, H.‑M. Tsai, H.-W. Shiu, C.-H. Chen, H.-J. Lin, J. Guo, and W.-F. Pong, Sci. Rep. 7, 42235 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. M. Korusenko
    • 1
    • 4
    Email author
  • S. N. Nesov
    • 1
  • S. N. Povoroznyuk
    • 1
    • 2
  • V. V. Bolotov
    • 1
  • E. V. Knyazev
    • 1
  • A. I. Pushkarev
    • 3
  • D. A. Smirnov
    • 4
    • 5
  1. 1.Omsk Scientific Center, Siberian Branch, Russian Academy of SciencesOmskRussia
  2. 2.Omsk State Technical UniversityOmskRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia
  4. 4.St. Petersburg UniversitySt. PetersburgRussia
  5. 5.Institute of Solid State Physics, Dresden University of TechnologyDresdenGermany

Personalised recommendations