Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2604–2607 | Cite as

Metal–Insulator Phase Transition in Iron-Doped Vanadium Dioxide Thin Films

  • V. N. AndreevEmail author
  • V. A. Klimov
PHASE TRANSITIONS
  • 1 Downloads

Abstract

The electrical conductivity of polycrystalline V(1 – x)FexO2 films has been investigated in a wide temperature range, which covers both the metal and insulator phase regions. It is shown that with an increase in the iron concentration the metal–insulator phase transition shifts toward lower temperatures, while the temperature range of the transition in doped samples additionally broadens as compared with pure VO2. To explain the temperature dependence of the electrical conductivity of the V(1 – x)FexO2 insulator phase, a hopping conductivity model has been used, which takes into account the effect of thermal vibrations of atoms on the resonance integral. The values of parameter ε have been calculated as a function of the degree of VO2 doping.

Notes

ACKNOWLEDGMENTS

This study was supported in part by the Program of the Physical Sciences Division, Russian Academy of Sciences.

REFERENCES

  1. 1.
    V. N. Andreev and V. A. Klimov, Phys. Solid State 49, 2251 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. Zilbersztejn and N. F. Mott, Phys. Rev. B 11, 4383 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Andreev and V. A. Klimov, Phys. Solid State 58, 606 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    G. Villeneuve, A. Bordet, A. Casalot, J. P. Pouget, H. Launois, and P. Lederer, J. Phys. Chem. Solids 33, 1953 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    M. Ritschel, N. Mattern, W. Bruckner, H. Opper-mann, G. Strover, W. Moldenhauer, J. Henre, and E. Wolf, Krist. Technol. 12, 1221 (1977).CrossRefGoogle Scholar
  6. 6.
    M. Marezio, D. B. McWhan, J. P. Remeika, and P. D. Dernier, Phys. Rev. B 7, 2541 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Gobden, Nature (London, U.K.) 500, 431 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, Nano Lett. 6, 2313 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelkov, K. Jones, A. Kolmakov, and S. V. Kalinin, Nano Lett. 10, 4409 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    E. Strelkov, A. Tselev, I. Ivanov, J. D. Budai, J. Zhang, J. Z. Tischler, I. Kravchenko, S. V. Kalinin, and A. Kolmakov, Nano Lett. 12, 6198 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films 436, 269 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    C. Marini, E. Arcangeletti, D. di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, Phys. Rev. B 77, 235111 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    V. N. Andreev, V. A. Klimov, M. E. Kompan, and B. A. Melekh, Phys. Solid State 56, 1857 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    N. F. Mott, Metall–Insulator Transitions (Tailor and Francis, London, 1974).Google Scholar
  15. 15.
    V. N. Andreev, T. V. Smirnova, and F. A. Chudnovskii, Phys. Status Solidi B 77, K97 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    E. Pollert, G. Villeneuve, F. Menil, and P. Hagenmuller, Mater. Res. Bull. 11, 159 (1976).CrossRefGoogle Scholar
  17. 17.
    V. V. Bryksin, Sov. Phys. JETP 73, 861 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations