Advertisement

Physics of the Solid State

, Volume 60, Issue 10, pp 1903–1907 | Cite as

Electronic States of Nanostructured Systems: Titanium and Zirconia

  • V. G. Zavodinsky
Metals
  • 2 Downloads

Abstract

The density functional method with pseudopotentials are used to study the electron states of nanoparticles and nanostructured systems: chains, films, and three-dimensional nanosystems of titanium and zirconia. It is shown that all studied titanium nanosystems have the density of electronic states (DES) of the metallic type, but zirconia nanosystem demonstrates a dielectric energy gap in the vicinity of the Fermi level. The density of states of nanostructured titanium is close in shape to DES of the single crystal but has a smoother shape due to disordering of the atomic arrangement. The forbidden band width of the nanostructured zirconia is smaller as compared to the corresponding width in crystalline ZrO2, supposedly because of incomplete saturation of ionic bonds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. P. Semenova, V. V. Latysh, A. V. Shcherbakov, and E. B. Yakushina, Ross. Nanotekh. 3 (9–10), 106 (2008).Google Scholar
  2. 2.
    I. O. Bolotina, V. I. Danilov, and A. A. Zagumennyi, J. Appl. Mech. Tech. Phys. 49, 484 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    L. M. Rudkovskaya, R. N. Pshenichnyi, T. V. Pavlenko, and A. A. Omel’chuk, Nanosyst. Nanomater. Nanotechnol. 10, 351 (2012).Google Scholar
  4. 4.
    V. Gritsenko, D. Gritsenko, S. Shaimeev, V. Aliev, K. Nasyrov, S. Erenburg, V. Tapilin, H. Wong, M.C. Poon, J. H. Lee, J.-W. Lee, and C. W. Kim, Microelectron. Eng. 81, 524 (2005).CrossRefGoogle Scholar
  5. 5.
    V. G. Zavodinsky and A. N. Chibisov, J. Phys.: Conf. Ser. 29, 173 (2006).ADSGoogle Scholar
  6. 6.
    M. Beckstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    H. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).ADSCrossRefGoogle Scholar
  8. 8.
    W. Kohn and J. L. Sham, Phys. Rev. A 140, 1133 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    D. R. Hamann, Phys. Rev. B 40, 2980 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    V. G. Zavodinskii and A. N. Chibisov, Phys. Solid State 51, 507 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    V. G. Zavodinskii, Phys. Solid State 46, 435 (2004).CrossRefGoogle Scholar
  14. 14.
    J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. J. Chadi, Phys. Rev. B 16, 1746 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    V. G. Zavodinskii, Computer Simulation of Nanoparticles and Nanosystems (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  18. 18.
    M. Salazar-Villanueva, P. H. Hernandez Tejeda, U. Pal, J. F. Rivas-Silva, J. I. Rodriguez Mora, and J. A. Ascencio, J. Phys. Chem. A 110, 10274 (2006).CrossRefGoogle Scholar
  19. 19.
    V. G. Zavodinskii and A. N. Chibisov, Phys. Solid State 48, 363 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    Yu. Chzhan, V. Chen’, and S. Tszyan, Mezhdun. Stud. Vestn. 6 (2016). https://doi.org/www.eduherald.ru/ru/article/view?id=16788. Google Scholar
  21. 21.
    M. Jafari, H. Jamnezhad, and L. Nazarzadeh, Iran. J. Sci. Technol. A 4, 511 (2012).Google Scholar
  22. 22.
    Keeyung Lee, J. Korean Phys. Soc. 45, 333 (2004).Google Scholar
  23. 23.
    Jijun Zhao, Qi Qiu, Baolin Wang, Jinlan Wang, and Guanghou Wang, Solid State Commun. 118, 157 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    S. E. Kulkova and O. N. Muryzhnikova, Phys. B (Amsterdam, Neth.) 192, 284 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    M. G. Mulaudzi, Dissertation. https://doi.org/hdl.handle.net/10386/1393.
  26. 26.
    S. M. Woodley, S. Hamad, J. A. Mejíasb, and C. R. A. Catlow, J. Mater. Chem. 16, 1927 (2006).CrossRefGoogle Scholar
  27. 27.
    J. Rui, Z. Yonghong, H. Shiping, W. Peng, and T. Pinghui, Chin. J. Chem. 29, 13 (2011).CrossRefGoogle Scholar
  28. 28.
    A. R. Puigdollers, F. Illas, and G. Pacchioni, J. Phys. Chem. 120 (8), 4392 (2016). doi 10.1021/acs.jpcc.5b12185Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Materials Sciences, Far East BranchRussian Academy of SciencesKhabarovskRussia

Personalised recommendations