Physics of the Solid State

, Volume 60, Issue 10, pp 1957–1965 | Cite as

Experimental Study and Analysis of Absorption Spectra of Ni2+ Ions in Nickel Orthoborate Ni3(BO3)2

  • A. D. MolchanovaEmail author


The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ferguson, H J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    S. R. Kuindersma, P. R. Boudewijn. C. Haas, J. Bethlehem, and A. Meetsma, Phys. Rev. B 26, 40 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    R. V. Pisarev, J. Ferré, R. H. Petit, B. B. Krichevtsov, and P. P. Syrnikov, J. Phys. C 7, 4143 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    G. R. Rossman, R. D. Shannon, and R. K. Waring, J. Solid State Chem. 39, 277 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    W. Low, Phys. Rev. 109, 247 (1958).ADSCrossRefGoogle Scholar
  7. 7.
    R. Newman and R. M. Chrenko, Phys. Rev. 114, 1507 (1959).ADSCrossRefGoogle Scholar
  8. 8.
    T. Ueno and M. Hayashi, J. Phys. Soc. Jpn. 22, 1305 (1967).ADSCrossRefGoogle Scholar
  9. 9.
    T. Tsuboi and W. Kleemann, J. Phys.: Condens. Matter 6, 8625 (1994).ADSGoogle Scholar
  10. 10.
    N. Mironova-Ulmane, M. G. Brik, and I. Sildos, J. Lumin. 135, 74 (2013).CrossRefGoogle Scholar
  11. 11.
    R. V. Pisarev, V. V. Druzhinin, S. D. Prochorova, N. N. Nesterova, and G. T. Andreeva, Phys. Status Solidi 35, 145 (1969).CrossRefGoogle Scholar
  12. 12.
    K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).ADSCrossRefGoogle Scholar
  13. 13.
    W. Götz, Naturwissensch. 50, 567 (1963).ADSCrossRefGoogle Scholar
  14. 14.
    R. E. Newnham, R. P. Santoro, P. F. Seal, and G. R. Stallings, Phys. Status Solidi B 16, K17 (1966).ADSCrossRefGoogle Scholar
  15. 15.
    R. V. Pisarev, M. A. Prosnikov, V. Yu. Davydov, A. N. Smirnov, E. M. Roginskii, K. N. Boldyrev, A. D. Molchanova, M. N. Popova, M. B. Smirnov, and V. Yu. Kazimirov, Phys. Rev. B 93, 134306 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    B. Z. Malkin, in Spectroscopy of Solids Contaning Rare Earth Ions, Ed. by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland, Amsterdam, 1987), Ch. 2, p.13.Google Scholar
  17. 17.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 766 (1954).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations