Advertisement

Physics of the Solid State

, Volume 60, Issue 10, pp 2103–2108 | Cite as

Photopolymerization in the Fullerene Layers of the Molecular Donor–Acceptor Complex {Pt(nPr2dtc)2} · (C60)2

  • K. P. Meletov
Fullerenes
  • 9 Downloads

Abstract

We measured Raman spectra in crystals of molecular donor–acceptor fullerene complexes {Me(nPr2dtc)2} · (C60)2 (Me = Ni, Cu, Pt). In the spectra of the {Pt(nPr2dtc)2} · (C60)2 complex under prolonged irradiation with a laser with λ = 532 nm, characteristic changes in the photopolymerization of fullerene are observed, associated with the splitting of degenerate phonon Hg modes and softening of Ag modes of the C60 molecule. The kinetics of photopolymerization under conditions of weak irradiation at room temperature is studied. It was found that thermal destruction of the photopolymer with increasing temperature leads to a decrease in its concentration in the final photopolymerization product. The kinetics of thermal destruction is described by the Arrhenius equation, with the activation energy EA of (0.68 ± 0.03) eV; the dimers are destructed to a concentration of 1% within 15 min at ~114°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Konarev, A. Y. Kovalevsky, S. S. Khasanov, G. Saito, D. V. Lopatin, A. V. Umrikhin, A. Otsuka, and R. N. Lyubovskaya, Eur. J. Inorg. Chem., 1881 (2006).Google Scholar
  2. 2.
    D. V. Konarev, S. S. Khasanov, A. Otsuka, M. Maesato, S. Gunzi, and R. N. Lyubovsakaya, Angew. Chem. 49, 4829 (2010).CrossRefGoogle Scholar
  3. 3.
    W. Cui, M. Yao, D. Liu, Q. Li, R. Liu, B. Zou, T. Cui, and B. Liu, J. Phys. Chem. B 116, 2643 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Kato, H. Murata, H. Gonnokami, and M. Tacibana, Carbon 107, 622 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Sun, W. Gui, S. Wang, and B. Liu, Sci. Rep. 7, 10809 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    K. P. Meletov, V. K. Dolganov, N. G. Spitsina, E. B. Yagubskii, J. Arvanitidis, K. Papagelis, S. Ves, and G. Kourouklis, Chem. Phys. Lett. 281, 360 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    K. P. Meletov, Phys. Solid State 56, 1689 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    K. P. Meletov, D. V. Konarev, and A. O. Tolstikova, J. Exp. Theor. Phys. 120, 989 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Kuzmin, D. V. Konarev, S. S. Khasanov, and K. P. Meletov, Nanosyst.: Phys. Chem. Math. 9, 33 (2018).Google Scholar
  10. 10.
    K. P. Meletov, G. Velkos, J. Arvanitidis, D. Christofilos, and G. A. Kourouklis, Chem. Phys. Lett. 681, 124 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    F. M. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, and I. J. Amster, Science (Washington, DC, U. S.) 259, 955 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    J. Winter and H. Kuzmany, Solid State Commun. 84, 935 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    P. W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Janossy, S. Pekker, G. Oszlanyi, and L. Forro, Nature (London, U.K.) 370, 636 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Iwasa, T. Arima, R. M. Fleming, T. Siegrist, O. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, H. L. Carter, A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, and T. Yagi, Science (Washington, DC, U. S.) 264, 1570 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. Nunez-Regueiro, L. Marques, J.-L. Hodeau, O. Bethoux, and M. Perroux, Phys. Rev. Lett. 74, 278 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    K. P. Meletov and G. A. Kourouklis, J. Exp. Theor. Phys. 115, 707 (2012).ADSGoogle Scholar
  17. 17.
    D. V. Konarev, S. S. Khasanov, D. V. Lopatin, V. V. Rodaev, and R. N. Lyubovskaya, Russ. Chem. Bull. 56, 2145 (2007).CrossRefGoogle Scholar
  18. 18.
    Ping Zhou, Zheng-Hong Dong, A. M. Rao, and P. C. Eklund, Chem. Phys. Lett. 211, 337 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    T. Wägberg, P.-A. Persson, B. Sundqvist, and P. Jacobsson, Appl. Phys. A 64, 223 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    S. Lebedkin, A. Gromov, S. Giesa, R. Gleiter, B. Renker, H. Rietschel, and W. Krätchmer, Chem. Phys. Lett. 285, 210 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    K. P. Meletov, V. K. Dolganov, O. V. Zharikov, I. N. Kremenskaya, and Yu. A. Ossipyan, J. Phys. I 2, 2097 (1992).Google Scholar
  22. 22.
    Y. Iwasa, K. Tanoue, T. Mitani, and T. Yagi, Phys. Rev. B 58, 16374 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    P. Nagel, V. Pasler, S. Lebedkin, A. Soldatov, C. Meingast, B. Sundqvist, P.-A. Persson, T. Tanaka, K. Komatsu, S. Buga, and A. Inaba, Phys. Rev. B 60, 16920 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    Ying Wang, J. M. Holden, Xiang-xin Bi, and P. C. Eklund, Chem. Phys. Lett. 217, 413 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    K. P. Meletov, J. Arvanitidis, D. Christofilos, G. A. Kourouklis, Y. Iwasa, and S. Yamanaka, Carbon 48, 2974 (2010).CrossRefGoogle Scholar
  26. 26.
    M. V. Korobov, A. G. Bogachev, A. A. Popov, V. M. Senyavin, E. B. Stukalin, A. V. Dzyabchenko, V. A. Davydov, L. S. Kashevarova, A. V. Rakhmanina, and V. Agafonov, Carbon 43, 954 (2005).CrossRefGoogle Scholar
  27. 27.
    G.-Wu Wang, K. Komatsu, Y. Murata, and M. Shiro, Nature (London, U.K.) 387, 583 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    K. P. Meletov, J. Arvanitidis, D. Christofilos, G. Kourouklis, and V. A. Davydov, Nanosyst.: Phys. Chem. Math. 9, 29 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations