Physics of the Solid State

, Volume 60, Issue 10, pp 2097–2102 | Cite as

Structure of Silicon-Substituted Polytricyclononene Films: Small-Angle Neutron Scattering Data

  • V. T. LebedevEmail author
  • N. P. Yevlampieva
  • M. V. Bermeshev
  • A. A. Szhogina


Polytricyclononenes are new polymers having high permeability values not only for atmospheric gases, but also gaseous hydrocarbons. Thin films (≤100 μm) used in gas-separation membrane technologies are necessary to be studied to improve the gas transport properties of these polymers. The structure of polytricyclononene films with two vicinal side substituents Si(CH3)3 in a monomer unit synthesized via additive polymerization scheme is studied in this work by a small-angle neutron scattering method. As a whole, the amorphous film has a local orientation order due to chain fragments with spiral conformation. The size of the ordered regions is comparable to the length of units correlations in the polymer chain (Kuhn segment) and is 8–9 nm. Free volume and type of voids (pores) formed in the polymer film due to inhomogeneous packing are also found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006).Google Scholar
  2. 2.
    M. B. Hägg, in Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Ed. by A. K. Pabby, S. S. H. Rizvi, and A. M. Sastre (CRC, Taylor and Francis Group, Boca Raton, 2008), Chap.4.Google Scholar
  3. 3.
    M. Teraguchi and T. Masuda, Macromolecules 35, 1149 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    M. Gringolts, M. Bermeshev, Yu. Yampolskii, L. Starannikova, V. Shantarovich, and E. Finkelshtein, Macromolecules 43, 7165 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 48, 8055 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    E. S. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Y. P. Yampolskii, Russ. Chem. Rev. 80, 341 (2011).ADSCrossRefGoogle Scholar
  7. 7.
  8. 8.
    N. P. Yevlampieva, M. V. Bermeshev, O. S. Vezo, and Yu. V. Il’yasova, Polymer Sci., Ser. A 60, 162 (2018).CrossRefGoogle Scholar
  9. 9.
    A. A. Askadskii and A. R. Khokhlov, Introduction to Physicochemistry of Polymers (Nauchnyi Mir, Moscow, 2009) [in Russian].Google Scholar
  10. 10.
    G. Stroble, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior (Springer, Berlin, Heidelberg, 2007).Google Scholar
  11. 11.
    D. I. Svergun and L. A. Feigin, X-ray and Neutron Small-Angle Scattering (Nauka, Moscow, 1986) [in Russian].Google Scholar
  12. 12.
    D. I. Svergun, J. Crystallogr. 25, 495 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. T. Lebedev
    • 1
    Email author
  • N. P. Yevlampieva
    • 2
  • M. V. Bermeshev
    • 3
  • A. A. Szhogina
    • 2
  1. 1.Konstantinov St. Petersburg Nuclear Physics InstituteNational Research Center “Kurchatov Institute,”GatchinaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations