Physics of the Solid State

, Volume 60, Issue 10, pp 2050–2057 | Cite as

The Evolution of the Conductivity and Cathodoluminescence of the Films of Hafnium Oxide in the Case of a Change in the Concentration of Oxygen Vacancies

  • D. R. Islamov
  • V. A. Gritsenko
  • V. N. Kruchinin
  • E. V. IvanovaEmail author
  • M. V. Zamoryanskaya
  • M. S. Lebedev
Optical Properties


The dependence of the conductivity of the films of hafnium oxide HfO2 synthesized in different modes is studied. Depending on the modes of synthesis, the conductivity of HfO2 at a fixed electric field of 1.0 MV/cm changes by four orders of magnitude. It is found that the conductivity of HfO2 is limited by the model of phonon-assisted tunneling between the traps. The thermal and optical energies of the traps Wt = 1.25 eV and Wopt = 2.5 eV, respectively, in HfO2 are determined. It is found that the exponentially strong scattering of the conductivity of HfO2 is due to the change in the trap density in a range of 4 × 1019–2.5 × 1022 cm–3. In the cathodoluminescence spectra of HfO2, a blue band with the energy of 2.7 eV is observed which is due to the oxygen vacancies. A correlation between the trap density and intensity of cathodoluminescence, as well as between the trap density and refractive index, is found. A nondestructive in situ method for the determination of the trap density of hafnium oxide with the use of the measurement of the refractive index is proposed. The optimum values of the concentrations of oxygen vacancies for emitting devices on the basis of the films of HfO2 are found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Robertson, Rep. Prog. Phys. 69, 327 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    T. V. Perevalov and V. A. Gritsenko, Phys. Usp. 53, 561 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    T. Ando, U. Kwon, S. Krishnan, M. M. Frank, and V. Narayan, in Thin Films on Silicon, Electronic and Photonic Applications, Ed. by V. Narayanan, M. M. Frank, and A. Demkov (Word Scientific, Singapore, 2016), p.323.Google Scholar
  4. 4.
    H. Zhu, J. E. Bonevich, H. Li, C. A. Richter, H. Yuan, O. Kirillov, and Q. Li, Appl. Phys. Lett. 104, 233504 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Gritsenko and D. R. Islamov, Physics of Dielectrical Films: Mechanisms of Charge Transport and Physical Principles of Memory Devices (Parallel’, Novosibirsk, 2017) [in Russian].Google Scholar
  6. 6.
    G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and M. Nafria, J. Appl. Phys. 110, 24518 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    S. Balatti, S. Larentis, D. C. Gilmer, and D. Ielmini, Adv. Mater. 25, 1474 (2013).CrossRefGoogle Scholar
  8. 8.
    A. A. Chernov, D. R. Islamov, A. A. Pik’nik, T. V. Perevalov, and V. A. Gritsenko, ECS Trans. 75, 95 (2017).CrossRefGoogle Scholar
  9. 9.
    T. V. Perevalov and D. R. Islamov, ECS Trans. 80, 357 (2017).CrossRefGoogle Scholar
  10. 10.
    D. R. Islamov, V. A. Gritsenko, C. H. Cheng, and A. Chin, Appl. Phys. Lett. 105, 222901 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys Rep. 613, 1 (2016).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. A. Nasyrov and V. A. Gritsenko, J. Exp. Theor. Phys. 112, 1026 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    K. A. Nasyrov and V. A. Gritsenko, Phys. Usp. 56, 999 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Islamov, V. A. Gritsenko, and A. Chin, Optoelectron., Instrum. Data Process. 53, 184 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, Appl. Phys. Lett. 104, 071904 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    E. V. Ivanova, M. V. Zamoryanskaya, V. A. Pustovarov, V. Sh. Aliev, V. A. Gritsenko, and A. P. Yelisseyev, J. Exp. Theor. Phys. 120, 710 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    V. Gritsenko, D. Islamov, T. Perevalov, V. Aliev, A. Yelisseyev, E. Lomanova, V. Pustovarov, and A. Chin, J. Phys. Chem. C 120, 19980 (2016).CrossRefGoogle Scholar
  18. 18.
    K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Vapor Depos. 8, 199 (2002).CrossRefGoogle Scholar
  19. 19.
    C. Liu, Y. M. Zhang, Y. M. Zhang, and H. L. Lv, J. Appl. Phys. 116, 222207 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    J. Gope, Vandana, N. Batra, J. Panigrahi, R. Singh, K. K. Maurya, R. Srivastava, and P. K. Singh, Appl. Surf. Sci. 357, 635 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Shvets, V. N. Kruchinin, and V. A. Gritsenko, Opt. Spectrosc. 123, 728 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    M. V. Zamoryanskaya, S. G. Konnikov, and A. N. Zamoryanskii, Instrum. Exp. Tech. 47, 477 (2004).CrossRefGoogle Scholar
  23. 23.
    M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, and Y. J. Chabal, Appl. Phys. Lett. 87, 133103 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    K. N. Orekhova, R. Tomala, D. Hreniak, W. Strek, and M. V. Zamoryanskaya, Opt. Mater. 74, 170 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    M. V. Zamoryanskaya and A. N. Trofimov, Opt. Spectrosc. 114, 79 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    A. N. Trofimov and M. V. Zamoryanskaya, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 3, 15 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. R. Islamov
    • 1
    • 2
  • V. A. Gritsenko
    • 1
    • 2
    • 3
  • V. N. Kruchinin
    • 1
  • E. V. Ivanova
    • 4
    Email author
  • M. V. Zamoryanskaya
    • 4
  • M. S. Lebedev
    • 5
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia
  4. 4.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations