Advertisement

Semiconductors

, Volume 53, Issue 12, pp 1651–1655 | Cite as

Parameters of Lateral and Unsteady Cord Currents in a Cylindrical Chalcogenide Glassy Semiconductor

  • N. V. SovtusEmail author
  • K. D. Mynbaev
AMORPHOUS, VITREOUS, AND ORGANIC SEMICONDUCTORS
  • 7 Downloads

Abstract

The heat-conduction equation describing the current cord in a semiconductor is approximately solved for a Ge–Sb–Te semiconductor system of cylindrical configuration. It is shown that the cord current at infinitely long times is proportional to the squared maximum temperature at the cord center and inversely proportional to the applied electric field. The scale of the lateral current perpendicular to the main cord current is estimated. It is found that the lateral current is low in comparison with the cord current; hence, the formation of lateral cords growing from the main cord is highly improbable.

Keywords:

chalcogenide glassy semiconductors memory effect current crowding lateral current 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    B. T. Kolomiets, Phys. Status Solidi B 7, 359 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    S. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    N. Croitoru and C. Popescu, Rev. Rom. Phys. 16, 129 (1971).Google Scholar
  4. 4.
    D. Thomas and J. Male, J. Non-Cryst. Sol. 8–10, 522 (1972).Google Scholar
  5. 5.
    I. V. Pechenezhskii and S. I. Dorozhkin, JETP Lett. 88, 127 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    N. Bogoslovskiy and K. Tsendin, Solid-State Electron. 129, 10 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    M. Nardone, M. Simon, I. V. Karpov, and V. G. Karpov, J. Appl. Phys. 112, 071101 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    H. S. P. Wong, S. Raoux, S. B. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Proc. IEEE 98, 2201 (2010).CrossRefGoogle Scholar
  9. 9.
    G. W. Burr, M. J. Brightsky, A. Sebastian, H. Y. Cheng, J. Y. Wu, S. Kim, N. E. Sosa, N. Papandreou, H. L. Lung, H. Pozidis, E. Eleftheriou, and C. H. Lam, IEEE J. Sel. Top. Circuit Syst. 6, 146 (2016).CrossRefGoogle Scholar
  10. 10.
    W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Nat. Rev. Mater. 4, 150 (2019).ADSCrossRefGoogle Scholar
  11. 11.
    P. Yeoh, Y. Ma, D. A. Cullen, J. A. Bain, and M. Skowronski, Appl. Phys. Lett. 114, 163507 (2019).ADSCrossRefGoogle Scholar
  12. 12.
    A. I. Isayev, S. I. Mekhtieva, S. N. Garibova, and V. Z. Zeynalov, Semiconductors 46, 1114 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Lebedev, S. A. Kozykhin, N. N. Konstantinova, and L. P. Kazakova, Semiconductors 43, 1343 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    N. A. Bogoslovskiy and K. D. Tsendin, Semiconductors 46, 559 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    B. L. Gel’mont and K. D. Tsendin, Electronic Phenomena in Non-Crystallline Semiconductors (Nauka, Leningrad, 1976), p. 177 [in Russian].Google Scholar
  16. 16.
    A. H. M. Shousha, J. Appl. Phys. 42, 5131 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    B. L. Gel’mont and K. D. Tsendin, Sov. Phys. Semicond. 10, 665 (1976).Google Scholar
  18. 18.
    A. M. Popov, S. M. Salnikov, and Yu. V. Anufriev, Semiconductors 49, 498 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations