, Volume 53, Issue 12, pp 1665–1671 | Cite as

Effects of Doping of Lead Sulfide with Silver on the Lattice and Optical Properties of Pb1 –xAgxS Solid Solutions

  • S. I. SadovnikovEmail author


Single-phase cubic Pb1 –xAgxS limited solid solutions based on PbS with a metal sublattice doped with Ag are produced. The maximal relative content of Ag in the Pb1 –xAgxS solid solutions reaches up to x = 0.15. The thermal expansion of semiconductor Pb1 –xAgxS solid solutions is first measured by the dilatometry technique in the temperature range from 295 to 580 K. The replacement of Pb atoms by Ag atoms in Pb1 –xAgxS results in a decrease in the coefficient of thermal expansion, which is due to a change in the anharmonicity of atomic vibrations and a slight increase in the elastic properties. For single-crystal PbS particles and Pb1 –xAgxS solid solutions, the spatial distributions of the modulus of elasticity E, the Poisson ratio μ, and the linear compressibility β in relation to the (hkl) direction are determined. The reflectance spectra of synthesized PbS, Ag2S, and Pb1 –xAgxS powders are recorded, and it is shown that the replacement of Pb by Ag in PbS is accompanied by an increase in the band gap.


solid solutions lead and silver sulfides thermal expansion elastic and optical properties 



The author thanks D.A. Yagodin for his help in dilatometric measurements and A.I. Gusev for helpful discussions.


The author declares that he has no conflict of interest.


  1. 1.
    R. B. Schoolar and J. R. Dixon, Phys. Rev. 137, 667 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    P. Junod, Helv. Phys. Acta 32, 567 (1959).Google Scholar
  3. 3.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, etc., 2018).Google Scholar
  4. 4.
    S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).CrossRefGoogle Scholar
  5. 5.
    H. J. van Hook, Econ. Geol. 55, 759 (1960).CrossRefGoogle Scholar
  6. 6.
    L. E. Shelimova, V. N. Tomashik, and V. I. Gritsiv, State Diagrams in Semiconductor Science of Materials (Nauka, Moscow, 1991), p. 255 [in Russian].Google Scholar
  7. 7.
    L. N. Maskaeva, V. F. Markov, T. V. Vinogradova, A. A. Rempel’, and A. I. Gusev, Poverkhnost’, No. 9, 35 (2003).Google Scholar
  8. 8.
    Y. Zheng, S. Wang, W. Liu, Z. Yin, H. Li, X. Tang, and C. Uher, J. Phys. D: Appl. Phys. 47, 115303 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    S. S. Sharma, Proc. Indian Acad. Sci. Sect. A 34, 72 (1951).CrossRefGoogle Scholar
  10. 10.
    S. I. Novikova and N. Kh. Abrikosov, Sov. Phys. Solid State 5, 1397 (1963).Google Scholar
  11. 11.
    Yi Zhang, X. Ke, C. Chen, J. Yang, and P. R. C. Kent, Phys. Rev. B 80, 024304 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    S. I. Sadovnikov and A. A. Rempel, Phys. Solid State 51, 2375 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    S. I. Sadovnikov, N. S. Kozhevnikova, A. A. Rempel, and A. Magerl, Thin Solid Films 548, 230 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 610, 196 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Okazaki and A. Takano, Zeitschr. Naturforsch. A 40, 986 (1985).ADSGoogle Scholar
  16. 16.
    S. I. Sadovnikov and A. I. Gusev, Phys. Solid State 59, 1887 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Gusev and S. I. Sadovnikov, Thermochim. Acta 660, 1 (2018).CrossRefGoogle Scholar
  18. 18.
    S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 586, 105 (2014).CrossRefGoogle Scholar
  19. 19.
    S. I. Sadovnikov and A. A. Rempel’, Inorg. Mater. 51, 759 (2015).CrossRefGoogle Scholar
  20. 20.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    X’Pert HighScore Plus. Version 2.2e (2.2.5) (PANalytical B.V., Almedo, the Netherlands, 2009).Google Scholar
  22. 22.
    G. A. Alers, in Lattice Dynamics: Physical Acoustics. Principles and Methods, Ed. by W. P. Mason (Academic, New York, London, 1965), Vol. 3, Pt. B, Chap. 1, p. 12.Google Scholar
  23. 23.
    G. Leibfried, Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle, Vol. 7 of Handbuch der Physik (Springer, Berlin, 1955), Part 2.Google Scholar
  24. 24.
    A. A. Chudinov, Sov. Phys. Solid State 5, 1061 (1963).Google Scholar
  25. 25.
    T. Gnäupel-Herold, P. C. Brand, and H. J. Prask, in Advances in X-ray Analysis, Proceedings of the Denver X-ray Conference (ICDD, 1998), Vol. 42.Google Scholar
  26. 26.
    R. Gaillac, P. Pullumbi, and F.-X. Coudert, J. Phys.: Condens. Matter 28, 275201 (2016).Google Scholar
  27. 27. Scholar
  28. 28. Scholar
  29. 29.
    T. Seetawan and H. Wattanasarn, Proc. Eng. 32, 609 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Kubelka and F. Munk, Zeitschr. Tech. Phys., No. 11a, 593 (1931).Google Scholar
  31. 31.
    S. I. Sadovnikov and A. I. Gusev, J. Therm. Anal. Calorim. 131, 1155 (2018).CrossRefGoogle Scholar
  32. 32.
    S. I. Sadovnikov, E. G. Vovkotrub, and A. A. Rempel, Dokl. Phys. Chem. 480, 80 (2018).CrossRefGoogle Scholar
  33. 33.
    S. I. Sadovnikov, J. Alloys Compd. 788, 586 (2019).CrossRefGoogle Scholar
  34. 34.
    S. I. Sadovnikov, Int. J. Nanosci. 18, 1940061 (2019).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations