Modification of Carbon-Nanotube Wettability by Ion Irradiation
- 15 Downloads
Abstract
The results of investigating the wettability of commercial multi-walled carbon nanotubes (MWCNTs) Taunit-MD under irradiation with 120-keV Ar+ ions with various fluences are presented. The structure of the irradiated MWCNTs is investigated using Raman spectroscopy, scanning electron microscopy, and X-ray microanalysis of the samples. The dependences of the average diameter of the MWCNTs, the O2 concentration, and defects in the MWCNT samples on the irradiation fluence, as well as their effect on the wettability with distilled water, ethylene glycol, and cyclohexane are considered. The possibility and prospects of using ion-beam modification methods for controlled variation of the wettability with the aim of creating a MWCNT coating, which is hydrophobic or hydrophilic to various types of liquids, are discussed.
Keywords:
ion irradiation multi-walled carbon nanotubes scanning electron microscopy Raman scattering wettability sessile drop methodNotes
FUNDING
This study was supported by the Russian Science Foundation (RSF), grant no. 18-72-00149.
A.P. Evseev is a scholar of the Foundation for Development of Theoretical Physics and Mathematics “BASIS”.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES
- 1.S. Iijima, Nature (London, U.K.) 354, 56 (1991).ADSCrossRefGoogle Scholar
- 2.E. M. Elsehly, N. G. Chechenin, A. V. Makunin, A. A. Shemukhin, and H. A. Motaweh, Rad. Phys. Chem. 146, 19 (2018).ADSCrossRefGoogle Scholar
- 3.K. D. Kushkina, A. A. Shemukhin, E. A. Vorobyeva, K. A. Bukunov, A. P. Evseev, A. A. Tatarintsev, K. I. Maslakov, N. G. Chechenin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 430, 11 (2018).Google Scholar
- 4.V. A. Kobzev, N. G. Chechenin, K. A. Bukunov, E. A. Vorobyeva, and A. V. Makunin, Mater. Today: Proc. 5, 26096 (2018).Google Scholar
- 5.V. I. Kleshch, A. A. Tonkikh, S. A. Malykhin, E. V. Redekop, A. S. Orekhov, A. L. Chuvilin, E. D. Obraztsova, and A. N. Obraztsov, Appl. Phys. Lett. 109, 143112 (2016).ADSCrossRefGoogle Scholar
- 6.A. A. Krylov, S. G. Sazonkin, N. R. Arutyunyan, V. V. Grebenyukov, A. S. Pozharov, D. A. Dvoretskiy, E. D. Obraztsova, and E. M. Dianov, J. Opt. Soc. Am. B 33, 134 (2016).ADSCrossRefGoogle Scholar
- 7.A. I. Chernov, V. A. Eremina, J. Shook, A. Collins, P. Walker, P. V. Fedotov, A. A. Zakhidov, and E. D. Obraztsova, Phys. Status Solidi B 255, 1700139 (2018).ADSCrossRefGoogle Scholar
- 8.D. J. Liaw, N. R. Arutyunyan, W.-H. Chiang, V. A. Ere-mina, E. P. Kharitonova, and E. D. Obraztsova, Phys. Status Solidi B 255, 1700283 (2018).ADSCrossRefGoogle Scholar
- 9.F. D. Nicola, P. Castrucci, M. Scarselli, F. Nanni, I. Cacciotti, and M. D. Crescenzi, Nanotechnology 26, 145701 (2015).ADSCrossRefGoogle Scholar
- 10.P. Das, S. Dhal, S. Ghosh, S. Chatterjee, C. S. Rout, N. Ramgir, and S. Chatterjee, Nucl. Instrum. Methods Phys. Res., Sect. B 413, 31 (2017).Google Scholar
- 11.S. H. Lu, M. H. N. Tun, Z. J. Mei, G. H. Chia, X. Lim, and C. Sow, Langmuir 25, 12806 (2009).CrossRefGoogle Scholar
- 12.B. Bhushan and Y. C. Jung, Ultramicroscopy 7, 1033 (2007).CrossRefGoogle Scholar
- 13.H. Kyakuno, M. Fukasawa, R. Ichimura, K. Matsuda, Y. Nakai, Y. Miyata, T. Saito, and Y. Maniwa, J. Chem. Phys. 145, 064514 (2016).ADSCrossRefGoogle Scholar
- 14.A. Ghasemi, H. Amiri, H. Zare, M. Masroor, A. Hasanzadeh, A. Beyzavi, A. R. Aref, M. Karimi, and M. R. Hamblin, Microfluid. Nanofluid. 21, 1 (2017).CrossRefGoogle Scholar
- 15.L. Yu, H. Hu, H. B. Wu, and X. W. Lou, Adv. Mater. 29, 1604563 (2017).CrossRefGoogle Scholar
- 16.G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, and W. Chen, Sci. Rep. 7, 43676 (2017).ADSCrossRefGoogle Scholar
- 17.G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 8, 3166 (2008).ADSCrossRefGoogle Scholar
- 18.J.-M. Tulliani, B. Inserra, and D. Ziegel, Micromachines 10, 232 (2019).CrossRefGoogle Scholar
- 19.J. Yang, Z. Zhang, X. Men, X. Xu, and X. Zhu, Langmuir 26, 10198 (2010).CrossRefGoogle Scholar
- 20.Y. Zhang, L. Chen, Z. Xu, Y. Li, M. Shan, L. Liu, Q. Guo, G. Chen, Z. Wang, and C. Wang, Int. J. Mater. Product Technol. 45, 1 (2012).ADSCrossRefGoogle Scholar
- 21.S. Baldo, V. Scuderi, L. Tripodi, A. la Magna, S. G. Leonardi, N. Donato, G. Neri, S. Filice, and S. Scalese, J. Sens. Sens. Syst. 4, 25 (2015).CrossRefGoogle Scholar
- 22.Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018).CrossRefGoogle Scholar
- 23.A. V. Kozhemiako, A. P. Evseev, Yu. V. Balakshin, and A. A. Shemukhin, Semiconductors 53 (6), 800 (2019).ADSCrossRefGoogle Scholar
- 24.A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).Google Scholar
- 25.M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).ADSCrossRefGoogle Scholar
- 26.S. Costa, E. Borowiak-Palen, M. Kruszyńska, A. Bachmatiuk, and R. J. Kaleńczuk, Mater. Sci.-Pol. 26, 434 (2008).Google Scholar
- 27.L. Bokobza and J. Zhang, eXPRESS Polym. Lett. 6, 601 (2012).CrossRefGoogle Scholar
- 28.A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, Nos. 4–3, 1731 (2005).CrossRefGoogle Scholar
- 29.S. Vollebregt, R. Ishihara, F. D. Tichelaar, Y. Hou, and C. I. M. Beenakker, Carbon 50, 3542 (2012).CrossRefGoogle Scholar
- 30.J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunierg, Carbon 49, 2581 (2011).CrossRefGoogle Scholar
- 31.N. Chakrapani, S. Curran, B. Wei, P. M. Ajayan, A. Carrillo, and R. S. Kane, J. Mater. Res. 18, 2515 (2003).ADSCrossRefGoogle Scholar
- 32.H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y. Lu, NANO: Brief Rep. Rev. 1 (1), 1 (2006).CrossRefGoogle Scholar
- 33.M. Pavese, S. Musso, S. Bianco, M. Giorcelli, and N. Pugno, J. Phys.: Condens. Matter 20, 474206 (2008).ADSGoogle Scholar