, Volume 53, Issue 12, pp 1683–1687 | Cite as

Modification of Carbon-Nanotube Wettability by Ion Irradiation

  • A. I. MorkovkinEmail author
  • E. A. Vorobyeva
  • A. P. Evseev
  • Yu. V. Balakshin
  • A. A. Shemukhin


The results of investigating the wettability of commercial multi-walled carbon nanotubes (MWCNTs) Taunit-MD under irradiation with 120-keV Ar+ ions with various fluences are presented. The structure of the irradiated MWCNTs is investigated using Raman spectroscopy, scanning electron microscopy, and X-ray microanalysis of the samples. The dependences of the average diameter of the MWCNTs, the O2 concentration, and defects in the MWCNT samples on the irradiation fluence, as well as their effect on the wettability with distilled water, ethylene glycol, and cyclohexane are considered. The possibility and prospects of using ion-beam modification methods for controlled variation of the wettability with the aim of creating a MWCNT coating, which is hydrophobic or hydrophilic to various types of liquids, are discussed.


ion irradiation multi-walled carbon nanotubes scanning electron microscopy Raman scattering wettability sessile drop method 



This study was supported by the Russian Science Foundation (RSF), grant no. 18-72-00149.

A.P. Evseev is a scholar of the Foundation for Development of Theoretical Physics and Mathematics “BASIS”.


The authors declare that they have no conflict of interest.


  1. 1.
    S. Iijima, Nature (London, U.K.) 354, 56 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    E. M. Elsehly, N. G. Chechenin, A. V. Makunin, A. A. Shemukhin, and H. A. Motaweh, Rad. Phys. Chem. 146, 19 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    K. D. Kushkina, A. A. Shemukhin, E. A. Vorobyeva, K. A. Bukunov, A. P. Evseev, A. A. Tatarintsev, K. I. Maslakov, N. G. Chechenin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 430, 11 (2018).Google Scholar
  4. 4.
    V. A. Kobzev, N. G. Chechenin, K. A. Bukunov, E. A. Vorobyeva, and A. V. Makunin, Mater. Today: Proc. 5, 26096 (2018).Google Scholar
  5. 5.
    V. I. Kleshch, A. A. Tonkikh, S. A. Malykhin, E. V. Redekop, A. S. Orekhov, A. L. Chuvilin, E. D. Obraztsova, and A. N. Obraztsov, Appl. Phys. Lett. 109, 143112 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Krylov, S. G. Sazonkin, N. R. Arutyunyan, V. V. Grebenyukov, A. S. Pozharov, D. A. Dvoretskiy, E. D. Obraztsova, and E. M. Dianov, J. Opt. Soc. Am. B 33, 134 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Chernov, V. A. Eremina, J. Shook, A. Collins, P. Walker, P. V. Fedotov, A. A. Zakhidov, and E. D. Obraztsova, Phys. Status Solidi B 255, 1700139 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    D. J. Liaw, N. R. Arutyunyan, W.-H. Chiang, V. A. Ere-mina, E. P. Kharitonova, and E. D. Obraztsova, Phys. Status Solidi B 255, 1700283 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    F. D. Nicola, P. Castrucci, M. Scarselli, F. Nanni, I. Cacciotti, and M. D. Crescenzi, Nanotechnology 26, 145701 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    P. Das, S. Dhal, S. Ghosh, S. Chatterjee, C. S. Rout, N. Ramgir, and S. Chatterjee, Nucl. Instrum. Methods Phys. Res., Sect. B 413, 31 (2017).Google Scholar
  11. 11.
    S. H. Lu, M. H. N. Tun, Z. J. Mei, G. H. Chia, X. Lim, and C. Sow, Langmuir 25, 12806 (2009).CrossRefGoogle Scholar
  12. 12.
    B. Bhushan and Y. C. Jung, Ultramicroscopy 7, 1033 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Kyakuno, M. Fukasawa, R. Ichimura, K. Matsuda, Y. Nakai, Y. Miyata, T. Saito, and Y. Maniwa, J. Chem. Phys. 145, 064514 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. Ghasemi, H. Amiri, H. Zare, M. Masroor, A. Hasanzadeh, A. Beyzavi, A. R. Aref, M. Karimi, and M. R. Hamblin, Microfluid. Nanofluid. 21, 1 (2017).CrossRefGoogle Scholar
  15. 15.
    L. Yu, H. Hu, H. B. Wu, and X. W. Lou, Adv. Mater. 29, 1604563 (2017).CrossRefGoogle Scholar
  16. 16.
    G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, and W. Chen, Sci. Rep. 7, 43676 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 8, 3166 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    J.-M. Tulliani, B. Inserra, and D. Ziegel, Micromachines 10, 232 (2019).CrossRefGoogle Scholar
  19. 19.
    J. Yang, Z. Zhang, X. Men, X. Xu, and X. Zhu, Langmuir 26, 10198 (2010).CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, L. Chen, Z. Xu, Y. Li, M. Shan, L. Liu, Q. Guo, G. Chen, Z. Wang, and C. Wang, Int. J. Mater. Product Technol. 45, 1 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    S. Baldo, V. Scuderi, L. Tripodi, A. la Magna, S. G. Leonardi, N. Donato, G. Neri, S. Filice, and S. Scalese, J. Sens. Sens. Syst. 4, 25 (2015).CrossRefGoogle Scholar
  22. 22.
    Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018).CrossRefGoogle Scholar
  23. 23.
    A. V. Kozhemiako, A. P. Evseev, Yu. V. Balakshin, and A. A. Shemukhin, Semiconductors 53 (6), 800 (2019).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).Google Scholar
  25. 25.
    M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    S. Costa, E. Borowiak-Palen, M. Kruszyńska, A. Bachmatiuk, and R. J. Kaleńczuk, Mater. Sci.-Pol. 26, 434 (2008).Google Scholar
  27. 27.
    L. Bokobza and J. Zhang, eXPRESS Polym. Lett. 6, 601 (2012).CrossRefGoogle Scholar
  28. 28.
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, Nos. 4–3, 1731 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Vollebregt, R. Ishihara, F. D. Tichelaar, Y. Hou, and C. I. M. Beenakker, Carbon 50, 3542 (2012).CrossRefGoogle Scholar
  30. 30.
    J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunierg, Carbon 49, 2581 (2011).CrossRefGoogle Scholar
  31. 31.
    N. Chakrapani, S. Curran, B. Wei, P. M. Ajayan, A. Carrillo, and R. S. Kane, J. Mater. Res. 18, 2515 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y. Lu, NANO: Brief Rep. Rev. 1 (1), 1 (2006).CrossRefGoogle Scholar
  33. 33.
    M. Pavese, S. Musso, S. Bianco, M. Giorcelli, and N. Pugno, J. Phys.: Condens. Matter 20, 474206 (2008).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Morkovkin
    • 1
    Email author
  • E. A. Vorobyeva
    • 2
  • A. P. Evseev
    • 1
    • 2
  • Yu. V. Balakshin
    • 2
    • 3
  • A. A. Shemukhin
    • 2
    • 3
  1. 1.Moscow State University (Faculty of Physics)MoscowRussia
  2. 2.Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  3. 3.Center for Quantum Technologies, Moscow State UniversityMoscowRussia

Personalised recommendations