, Volume 53, Issue 12, pp 1646–1650 | Cite as

Charge Transfer in Gap Structures Based on the Chalcogenide System (As2Se3)100 –xBix

  • R. A. Castro
  • S. D. Khanin
  • A. P. Smirnov
  • A. A. KononovEmail author


The results of investigating charge-transfer processes in thin layers of a vitreous system (As2Se3)100 – xBix are presented. A power-law dependence of the conductivity on the frequency and a decrease in the exponent s with increasing temperature are found. Charge transfer is a thermally activated process with two regions in the temperature dependence of the conductivity with the activation energies E1 = 0.12 ± 0.01 eV and E2 = 0.23 ± 0.01 eV, respectively. The results are explained in terms of the correlated barrier hopping (CBH) model of hopping conductivity in disordered systems. The main microparameters of the system are calculated: the density of localized states (N), the hopping length (Rω), and the largest height of the potential barrier (WM).


vitreous system (As2Se3)100 –xBix dielectric spectroscopy conductivity gap structures X-ray diffraction analysis 



This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the state task (project no. 16.2811.2017/PCh).


The authors declare that they have no conflict of interest.


  1. 1.
    D. Cha, H. Kim, Y. Hwang, J. Jeong, and J. Kim, Appl. Opt. 51, 5649 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).CrossRefGoogle Scholar
  3. 3.
    J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, Sens. Actuators, B 173, 468 (2012).CrossRefGoogle Scholar
  4. 4.
    B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Kurmar, B. R. Mehta, S. C. Kashyap, and K. L. Chopra, Appl. Phys. Lett. 52, 24 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    R. A. Castro and F. S. Nasredinov, Glass Phys. Chem. 32, 412 (2006).CrossRefGoogle Scholar
  7. 7.
    R. A. Castro, S. A. Nemov, and P. P. Seregin, Semiconductors 40, 898 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    L. P. Kazakova, E. A. Lebedev, E. A. Smorgonskaya, and K. D. Tsendin, Electronic Phenomena in Glassy Chalcogenide Semiconductors, Ed. by K. D. Tsendin (Nauka, St. Petersburg, 1996) [in Russian].Google Scholar
  9. 9.
    R. A. Castro, V. A. Bordovsky, N. I. Anisimova, and G. I. Grabko, Semiconductors 43, 365 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Castro, V. A. Bordovsky, and G. I. Grabko, Glass Phys. Chem. 35, 43 (2009).CrossRefGoogle Scholar
  11. 11.
    N. I. Anisimova, V. A. Bordovsky, and G. A. Bordovsky, Rad. Eff. Def. Solids 156, 359 (2002).CrossRefGoogle Scholar
  12. 12.
    M. I. Korsunskii, Physics of X-Rays (ONTI, Moscow, Leningrad, 1936) [in Russian].Google Scholar
  13. 13.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Calendon, Oxford, 1979).Google Scholar
  14. 14.
    S. R. Elliot, Adv. Phys. 36, 135 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    I. G. Austin and N. F. Mott, Adv. Phys. 18 (71), 41 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    M. Saiter, T. Derrey, and C. Vautier, J. Non-Cryst. Sol. 77–78, 1169 (1985).Google Scholar
  17. 17.
    B. L. Gel’mont and K. D. Tsendin, Sov. Phys. Semicond. 17, 655 (1983).Google Scholar
  18. 18.
    D. B. Hyun, J. S. Hwang, and B. C. You, J. Mater. Sci. 33, 5595 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. A. Castro
    • 1
  • S. D. Khanin
    • 1
    • 2
  • A. P. Smirnov
    • 1
  • A. A. Kononov
    • 1
    Email author
  1. 1.Herzen State Pedagogical University of RussiaSt. PetersburgRussia
  2. 2.Budyonny Military Academy of CommunicationsSt. PetersburgRussia

Personalised recommendations