, Volume 53, Issue 15, pp 2037–2039 | Cite as

Field-Emission Cathodes Based on Microchannel Plates

  • Z. M. KhamdokhovEmail author
  • Z. Ch. Margushev
  • E. Z. Khamdokhov
  • R. Sh. Teshev
  • M. D. Bavizhev


The existing methods of fabricating low-field cathodes do not permit the development of device structures that comply with the requirements of developers of systems. In this work, large-area field-emission cathodes with homogeneous emission properties of the working surface and low working voltages (<1 kV) are considered. A Spindt cathode with a number of silicon microtips up to 6000 and a packing density of ~1 × 105 cm–2 is investigated. Titanium nitride and carbon films are deposited onto microtips using the electric-arc method. It is shown that the cathode has low emission homogeneity due to the problem of reproducing microtips of the same shape and size. A cathode based on a microchannel plate with channels 6 μm in diameter, inside which graphite-like nanostructures are formed by the electric-arc method, is fabricated. It is found that an increase in the electron flux in the channels of a microchannel plate can result in a considerable decrease in the operating voltage (<1 kV) and attain high emission homogeneity at the highest admissible output current.


field-emission cathode microchannel plate electric field current gain 



  1. 1.
    V. Zhigalov, V. Petukhov, A. Emelianov, et al., in Proceedings of the IEEE Young Researches in Electrical and Electronic Engineering ELConRus,2017, p. 1449.Google Scholar
  2. 2.
    R. V. Konakova, O. B. Okhrimenko, A. M. Svetlichnyi, O. A. Ageev, E. Yu. Volkov, A. S. Kolomiytsev, I. L. Jityaev, and O. B. Spiridonov, Semiconductors 49, 1242 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    G. G. Sominskii and T. A. Tumareva, Izv. Vyssh. Uchebn. Zaved., PND 17 (3), 17 (2009).Google Scholar
  4. 4.
    G. N. Fursei, M. A. Polyakov, A. A. Kantonistov, A. M. Yafyasov, B. S. Pavlov, and V. B. Bozhevol’nov, Tech. Phys. 58, 845 (2013).CrossRefGoogle Scholar
  5. 5.
    S. G. Savel’ev, N. I. Sinitsyn, G. V. Torgashov, and Yu. A. Grigor’ev, in Proceedings of the International Interschool Conference on Modern Problems of Microwave Electronics and Radiophysics, Saratov,2001, p. 138.Google Scholar
  6. 6.
    E. Z. Khamdokhov, Z. M. Khamdokhov, V. S. Kulikauskas, et al., J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 8, 12997 (2014).Google Scholar
  7. 7.
    C. A. Spindt, I. Brodie, L. Humphry, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    A. Z. Khamdokhov and E. Z. Khamdokhov, RF Patent No. 2497977, Byull. Izobret., No. 31 (2013).Google Scholar
  9. 9.
    E. Z. Khamdohov, R. Sh. Teshev, Z. M. Khamdohov, A. Z. Khamdohov, Z. H. Kalajokov, and H. H. Kalajokov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1306 (2014).CrossRefGoogle Scholar
  10. 10.
    E. Z. Khamdokhov and Z. M. Khamdokhov, RF Patent No. 2640355 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Z. M. Khamdokhov
    • 1
    Email author
  • Z. Ch. Margushev
    • 1
  • E. Z. Khamdokhov
    • 2
  • R. Sh. Teshev
    • 2
  • M. D. Bavizhev
    • 3
  1. 1.Institute of Informatics and Problems of Regional Management of Caucasus, Russian Academy of SciencesNalchikRussia
  2. 2.Berbekov Kabardino-Balkarian State UniversityNalchikRussia
  3. 3.Scientific-and-Research Center, AO NPP “Radii”MoscowRussia

Personalised recommendations