, Volume 53, Issue 11, pp 1465–1471 | Cite as

Structure and Electrical Properties of (ZnO/SiO2)25 Thin Films

  • M. N. Volochaev
  • Yu. E. Kalinin
  • M. A. Kashirin
  • V. A. MakagonovEmail author
  • S. Yu. Pankov
  • V. V. Bassarab


(ZnO/SiO2)25 thin-film multilayers consisting of nanocrystalline ZnO layers and amorphous SiO2 spacers with a bilayer thickness from 6 to 10 nm are synthesized in a single deposition process. An analysis of the temperature dependences of the electrical resistivity of (ZnO/SiO2)25 thin films shows that, in the temperature range of 77–300 K, the dominant conductivity mechanism successively changes from hopping conductivity with a variable hopping length in a narrow energy band near the Fermi level at temperatures of 77–250 K to thermally activated impurity conductivity around room temperature. Using the obtained temperature dependences of the electrical resistivity, the effective density of localized states at the Fermi level and the activation energy of impurity levels are estimated. The effect of heat treatment on the structure and electrical properties of the synthesized films is examined. It is established that in (ZnO/SiO2)25 thin-film systems at temperatures of 580–600°C, the ZnO and SiO2 layers chemically interact, which is accompanied by destruction of the multilayer structure and formation of the Zn2SiO4 compound with a tetragonal structure (sp. gr. I-42d).


thin films multilayers oxide semiconductors hopping conductivity thermal stability 



We are grateful to the Center of Collective Use, Krasnoyarsk Scientific Center for providing the possibility of carrying out electron microscopy investigations of the samples.


This study was carried out in the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. 3.1867.2017/4.6.


The authors declare that they have no conflict of interest.


  1. 1.
    D. C. Look and B. Claflin, MRS Symp. Proc. 829, 8.6 (2005).Google Scholar
  2. 2.
    Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, Phys. Rev. B 73, 205342 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    T. S. Herng, S. P. Lau, C. S. Wei, L. Wang, B. C. Zhao, M. Tanemura, and Y. Akaike, Appl. Phys. Lett. 95, 133103 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    K. Toshio and H. Hideo, NPG Asia Mater. 2, 15 (2010).CrossRefGoogle Scholar
  5. 5.
    H. M. Kim, C. H. Lee, and B. Kim, J. Nanosci. Nanotechnol. 19, 1790 (2019).CrossRefGoogle Scholar
  6. 6.
    L. K. Markov, A. S. Pavlyuchenko, and I. P. Smirnova, Semiconductors 53, 172 (2019).ADSCrossRefGoogle Scholar
  7. 7.
    S. Sanctis, J. Krausmann, and C. Guhl, J. Mater. Chem. C 6, 464 (2018).CrossRefGoogle Scholar
  8. 8.
    S. Nam, J. H. Yang, S. H. Cho, J. H. Choi, O. S. Kwon, E. S. Park, S. J. Lee, K. I. Cho, J. Jang, and C. S. Hwang, J. Mater. Chem. C 4, 11298 (2016).CrossRefGoogle Scholar
  9. 9.
    Ch. H. Ahn, S. H. Kim, Y. K. Kim, H. S. Lee, and H. K. Cho, Thin Solid Films 584, 336 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    G. Cui, D. Han, J. Dong, Y. Cong, X. Zhang, H. Li, W. Yu, S. Zhang, X. Zhang, and Yi. Wang, Jpn. J. Appl. Phys. 56, 04CG03 (2017).CrossRefGoogle Scholar
  11. 11.
    V. V. Ryl’kov, S. N. Nikolaev, V. A. Demin, A. V. Emel’yanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    O. V. Zhilova, S. Yu. Pankov, A. V. Sitnikov, Yu. E. Kalinin, and I. V. Babkina, AIP Conf. Proc. 1886, 020054 (2017).CrossRefGoogle Scholar
  13. 13.
    N. F. Mott and E. A. Davis, Electron Procuresses in Non-Crystalline Materials (Clarendon, Oxford, 1979; Mir, Moscow, 1982).Google Scholar
  14. 14.
    N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, and M. Grundmann, J. Appl. Phys. 93, 126 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Maddahfar, M. Ramezani, and S. M. Hosseinpour-Mashkani, Appl. Phys. A 122, 752 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Volochaev
    • 1
  • Yu. E. Kalinin
    • 2
  • M. A. Kashirin
    • 2
  • V. A. Makagonov
    • 2
    Email author
  • S. Yu. Pankov
    • 2
  • V. V. Bassarab
    • 2
  1. 1.Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations