, Volume 53, Issue 11, pp 1514–1523 | Cite as

Formation of ncl-Si in the Amorphous Matrix a-SiOx:H Located near the Anode and on the Cathode, Using a Time-Modulated DC Plasma with the (SiH4–Ar–O2) Gas Phase (\({{{\text{C}}}_{{{{{\text{O}}}_{2}}}}}\) = 21.5 mol %)

  • Yu. K. UndalovEmail author
  • E. I. Terukov
  • I. N. Trapeznikova


The formation of ncl-Si in the amorphous matrix a-SiOx:H using a time-modulated DC plasma at an elevated oxygen content of \({{C}_{{{{{\text{O}}}_{2}}}}}\) = 21.5 mol % in a gas mixture of (SiH4–Ar–O2) is investigated. Plasma modulation implies the repeated (n = 180) switching on (for ton = 5, 10, 15 s) and switching off (for toff = 5, 10, 15 s) of the magnet coil of the DC magnetron. The effect of self-induction is used to enhance the processes of SiH4 dissociation, the formation of Si nanoparticles, and the ionization of oxygen and ncl-Si flows towards the electrodes. The samples are located both on an electrically isolated substrate holder near the anode and on the cathode (beyond its erosion zone). These experiments show that the shape of the dependences of the photoluminescence intensity \(I_{{{\text{PL}}}}^{{ncl - {\text{Si}}}}\) on the wavelength Λ are identical for all pairs of samples on the anode and cathode. When the ton value is small (ton = 5 s), the difference in the sample location only slightly affects the infrared (IR) spectra. At longer times ton (≥10 s) and a short time toff (5 s), the amorphous matrix located on the cathode is enriched with oxygen (as compared with that near the anode). The optimal plasma-modulation parameters are found to be toff/ton = 5, 10, 15/10 and toff/ton = 5, 10/15; under these conditions, the amorphous matrix has a “perfect structure” and is transparent to radiation, and the \(I_{{{\text{PL}}}}^{{ncl - {\text{Si}}}}\) value is the largest in the range λ ≈ 0.75–0.9 μm.


modulated DC plasma a-SiOx:H matrix ncl-Si {(SiH4–Ar) +21.5 mol % O2anode cathode 



We are grateful to O.B. Gusev for recording the PL spectra.


The authors declare that they have no conflict of interest.


  1. 1.
    Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, Nature (London, U.K.) 378, 258 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    D. J. Lockwood, Solid State Commun. 92, 101 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    D. J. Lockwood and A. G. Wang, Solid State Commun. 94, 905 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, and S. B. Zhang, Appl. Phys. Lett. 81, 4174 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, Appl. Phys. Lett. 81, 4248 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Kanzawa, S. Hayashi, and K. Yamamoto, J. Phys.: Condens. Matter 8, 4823 (1996).ADSGoogle Scholar
  7. 7.
    Yu. K. Undalov, E. I. Terukov, O. B. Gusev, and I. N. Trapeznikova, Semiconductors 50, 530 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. K. Undalov, E. I. Terukov, and I. N. Trapeznikova, Semiconductors 52, 1255 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bouchoule, A. Plain, L. Boufendi, J. Ph. Blondeau, and C. Laure, J. Appl. Phys. 70, 1991 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    L. Boufendi, A. Plain, J. Ph. Blondeau, A. Bouchoule, C. Laure, and M. Toogood, Appl. Phys. Lett. 60, 169 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    B. S. Danilin and V. K. Syrchin, Magnetron Spray Systems (Radio Svyaz’, Moscow, 1982) [in Russian].Google Scholar
  13. 13.
    H. Conrads and M. Schmidt, Plasma Sources Sci. Technol. 9, 441 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. K. Undalov
    • 1
    Email author
  • E. I. Terukov
    • 1
    • 2
  • I. N. Trapeznikova
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Electronic University “LETI”St. PetersburgRussia

Personalised recommendations