, Volume 53, Issue 11, pp 1439–1444 | Cite as

Quantum Corrections and Magnetotransport in 3D Dirac Semimetal Cd3 –xMnxAs2 Films

  • A. B. MekhiyaEmail author
  • A. A. Kazakov
  • L. N. Oveshnikov
  • A. B. Davydov
  • A. I. Ril
  • S. F. Marenkin
  • B. A. Aronzon


Thin films of solid solutions based on the three-dimensional Dirac semimetal Cd3As2 with the addition of manganese are investigated. Cd3 –xMnxAs2 films (x = 0, 0.05, and 0.1) 50–70 nm in thickness are formed on a glassceramic substrate using vacuum-thermal deposition from cadmium arsenide ingots doped by Mn and fabricated by direct alloying elements by the vacuum-cell method. The temperature and magnetic-field dependences of the resistance are measured and the transport parameters of the films under study are determined. Positive magnetoresistance of the characteristic shape corresponding to the contribution of the weak antilocalization effect is observed for films with x = 0 and 0.05. The contribution from the weak localization effect is observed at a higher Mn content (x = 0.1). This change in the quantum correction type as applied to topological semimetals points to reconstruction of the band structure and transition from the Dirac semimetal state into a trivial semiconductor phase, which corresponds to the critical Mn content xc ~ 0.07 in this case.


glassceramic substrates vacuum-thermal deposition antilocalization 



Investigation into the transport properties was supported by the Russian Scientific Foundation, project no. 17-12-01345. The samples were prepared by S.F. Marenkin and A.I. Ril in the scope of the state order of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences in the Field of Basic Scientific Research with partial support of the Program of the Presidium of the Russian Academy of Sciences I.35 “Scientific Foundations of the Development of New Functional Materials”.


The authors claim that they have no conflict of interest.


  1. 1.
    N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, and Y. Zhang, Nat. Mater. 13, 677 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 1209 (2009).CrossRefGoogle Scholar
  5. 5.
    Zh. Wang, H. Weng, Q. Wu, X. Dai, and Zh. Fang, Phys. Rev. B 88, 125427 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    Siangan Wang, Ari M. Turner, A. Viswanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Neupane, Sui-Yang Xu, R. Sankar, N. Alidoust, G. Bian, Ch. Liu, I. Belopolski, T.-T. Cjang, H.-T. Jeng, H. Lin, A. Bansik, F. Chou, and M. Z. Hasan, Nat. Commun. 5, 3786 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 99, 125305 (2019).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Suslov, A. B. Davydov, L. N. Oveshnikov, L. A. Morgun, K. I. Kugel, V. S. Zakhvalinskii, E. A. Pilyuk, A. V. Kochura, A. P. Kuzmenko, V. M. Pudalov, and B. A. Aronzon, Phys. Rev. B 99, 094512 (2019).ADSCrossRefGoogle Scholar
  11. 11.
    E. Zhang,  Y. Liu,  W. Wang,  C. Zhang,  P. Zhou, Z.-G. Chen, J. Zou, and F. Xiu, ACS Nano 9, 8843 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Goyal, L. Galletti, S. Salmani-Rezaie, T. Schumann, D. A. Kealhofer, and S. Stemme, APL Mater. 6, 026105 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    B. L. Altshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmel’nitzkii, Sov. Phys. JETP 54, 411 (1981).Google Scholar
  14. 14.
    D. V. Baxter, R. Richter, M. L. Trudeau, R. W. Cochrane, and J. O. Strom-Olsen, J. Phys. (France) 50, 1673 (1989).CrossRefGoogle Scholar
  15. 15.
    S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. B. Mekhiya
    • 1
    Email author
  • A. A. Kazakov
    • 1
  • L. N. Oveshnikov
    • 1
    • 2
  • A. B. Davydov
    • 1
  • A. I. Ril
    • 3
  • S. F. Marenkin
    • 3
    • 4
  • B. A. Aronzon
    • 1
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.NRC “Kurchatov Institute”MoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  4. 4.NUST MISiSMoscowRussia

Personalised recommendations