, Volume 53, Issue 11, pp 1479–1488 | Cite as

Boson Peak Related to Ga Nanoclusters in AlGaN Layers Grown by Plasma-Assisted Molecular Beam Epitaxy at Ga-Rich Conditions

  • V. Yu. DavydovEmail author
  • V. N. JmerikEmail author
  • E. M. RoginskiiEmail author
  • Yu. E. KitaevEmail author
  • Y. M. BeltukovEmail author
  • M. B. SmirnovEmail author
  • D. V. NechaevEmail author
  • A. N. SmirnovEmail author
  • I. A. EliseyevEmail author
  • P. N. BrunkovEmail author
  • S. V. IvanovEmail author


We report the results of systematic Raman spectroscopy studies of AlxGa1 –xN (x ~ 0.75) layers grown using plasma-assisted molecular beam epitaxy at various stoichiometric conditions and growth fluxes. The high-intensity asymmetric low-frequency peak obeying Bose statistics is discovered in Raman spectra of the layers grown by temperature-modulated epitaxy at strongly Ga-enriched conditions. Theoretical model is developed to explain the origin and the high intensity of the observed low-frequency peak, which is attributed to the presence of excessive metallic gallium in AlGaN layers and can be explained by vibrations of gallium clusters with a diameter of ~1 nm. The nature of the low-frequency peak is similar to that of the boson peak in glasses, which occupies the same frequency range in Raman spectra. We demonstrate the capabilities of Raman spectroscopy as an express and non-destructive technique for optimization of growth conditions of AlGaN layers to achieve simultaneously the atomically-smooth droplet-free surface morphology and the high structural quality.


AlGaN alloys plasma-assisted molecular beam epitaxy Raman spectroscopy nanoclusters boson peak 



The authors are thankful to R.A. Suris and V.I. Kozub for the fruitful discussions and valuable comments. The work was supported in part by Russian Science Foundation (project no. 19-72-30040) for Raman spectroscopy studies and theoretical analysis.


The authors declare no conflict of interest.


  1. 1.
    V. N. Jmerik, D. V. Nechaev, and S. V. Ivanov, Molecular Beam Epitaxy: From Research to Mass Production, Ed. by M. Henini, 2nd ed. (Elsevier, Amsterdam, 2018), Chap. 8, p. 135.Google Scholar
  2. 2.
    D. V. Nechaev, P. N. Brunkov, S. I. Troshkov, V. N. Jmerik, and S. V. Ivanov, J. Cryst. Growth 425, 9 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck, J. Appl. Phys. 88, 1855 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    J. E. Northrup, J. Neugebauer, R. M. Feenstra, and A. R. Smith, Phys. Rev. B 61, 9932 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    F. Demangeot, J. Groenen, J. Frandon, and M. A. Renucci, Appl. Phys. Lett. 72, 2674 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Klochikhin, V. Yu. Davydov, I. N. Goncharuk, A. N. Smirnov, A. E. Nikolaev, M. V. Baidakova, J. Aderhold, J. Graul, J. Stemmer, and O. Semchinova, Phys. Rev. B 62, 2522 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    M. Holtz, T. Prokofyeva, M. Seon, K. Copeland, J. Vanbuskirk, and S. Williams, J. Appl. Phys. 89, 7977 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    V. Yu. Davydov, I. N. Goncharuk, A. N. Smirnov, A. E. Nikolaev, W. V. Lundin, A. S. Usikov, A. A. Klo-chikhin, J. Aderhold, J. Graul, O. Semchinova, and H. Harima, Phys. Rev. B 65, 125203 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    D. V. Nechaev, P. A. Aseev, V. N. Jmerik, P. N. Brunkov, Y. V. Kuznetsova, A. A. Sitnikova, V. V. Ratnikov, and S. V. Ivanov, J. Cryst. Growth 378, 319 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    V. N. Jmerik, A. M. Mizerov, D. V. Nechaev, P. A. Aseev, A. A. Sitnikova, S. I. Troshkov, P. S. Kop’ev, and S. V. Ivanov, J. Cryst. Growth 354, 188 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  12. 12.
    X. Gonze, G. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, et al., Z. Kristallogr. 220, 558 (2005).Google Scholar
  13. 13.
    X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, et al., Comput. Phys. Commun. 180, 2582 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Hamann, Phys. Rev. B 88, 085117 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    X. Gonze, Phys. Rev. B 55, 10337 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Cracknell, B. L. Davies, S. C. Miller, and W. F. Love, Kronecker Product Tables (IFI/Plenum, New York, 1979), Vol. 1.Google Scholar
  19. 19.
    V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    D. Tuschel, Spectroscopy 31, 8 (2016).Google Scholar
  21. 21.
    R. Shuker and R. W. Gammon, Phys. Rev. Lett. 25, 222 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    B. D. Sharma and J. Donohue, Zeitschr. Kristallogr. Cryst. Mater. 117, 293 (1962).CrossRefGoogle Scholar
  23. 23.
    W. Reichardi, R. M. Nicklow, G. Colling, and H. G. Smith, Bull. Am. Phys. Soc. 14, 378 (1969).Google Scholar
  24. 24.
    L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, J. Phys. F: Met. Phys. 11, 2261 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    K. R. Lyall and J. F. Cochran, Can. J. Phys. 49, 1075 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    H. Lamb, Proc. London Math. Soc. 13, 187 (1882).Google Scholar
  27. 27.
    A. Tamura and T. Ichinokawa, J. Phys. C 16, 4779 (1983).ADSCrossRefGoogle Scholar
  28. 28.
    E. Duval, Phys. Rev. B 46, 5795 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    M. G. Mil’vidskii and V. V. Chaldyshev, Semiconductors 32, 457 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    S. N. Grinyaev and V. A. Chaldyshev, Semiconductors 35, 86 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    N. Drebov, F. Weigend, and R. Ahlrichs, J. Chem. Phys. 135, 044314 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    S. Núñez, J. M. López, and A. Aguado, Nanoscale 4, 6481 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    V. Kaware and K. Joshi, J. Chem. Phys. 141, 054308 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    V. Yu. Davydov, A. A. Klochikhin, M. B. Smirnov, Yu. E. Kitaev, A. N. Smirnov, E. Y. Lundina, H. Lu, W. J. Schaff, H.-M. Lee, H.-W. Lin, Y.-L. Hong, and S. Gwo, Phys. Status Solidi C 5, 1648 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    V. K. Malinovsky and A. P. Sokolov, Solid State Commun. 57, 757 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    S. Perticaroli, J. D. Nickels, G. Ehlers, and A. P. Sokolov, Biophys. J. 106, 2667 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    H. R. Schober, D. A. Parshin, and V. L. Gurevich, J. Phys.: Conf. Ser. 92, 012131 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Saint-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations