Advertisement

Semiconductors

, Volume 53, Issue 11, pp 1558–1561 | Cite as

Raman Scattering in AlN Crystals Grown by Sublimation on SiC and AlN Seeds

  • I. D. Breev
  • A. N. AnisimovEmail author
  • A. A. Wolfson
  • O. P. Kazarova
  • E. N. MokhovEmail author
FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • 6 Downloads

Abstract

The Raman-scattering technique is used to analyze the structural quality of bulk AlN crystals grown by sublimation on SiC and AlN seeds. Growth on SiC seeds is conducted with retention of the SiC seed during growth (type 1) and with total evaporation of the SiC seed (type 2). Growth on AlN seeds is conducted in tungsten containers with no graphite parts (type 3). According to the analysis of Raman spectra, the highest quality is inherent in type-3 crystals that exhibit minimal full widths at half maximum of Raman lines. The experimentally observed specific features are defined by differences in the mechanism of growth and by the content of dopant impurities in the crystals grown.

Keywords:

AlN sublimation sandwich method Raman scattering 

Notes

FUNDING

The study was supported by the Russian Foundation for Basic Research, project no. 19-02-00649-a.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1a.
    Y. A. Vodakov and E. N. Mokhov, USSR Patent No. 403275 (1970);Google Scholar
  2. 1b.
    US Patent No. 414572 (1979).Google Scholar
  3. 2.
    E. N. Mokhov, O. V. Avdeev, I. S. Barash, T. Yu. Chemekova, A. D. Roenkov, A. S. Segal, A. A. Wolfson, Yu. N. Makarov, M. G. Ramm, and H. Helava, J. Cryst. Growth 281, 93 (2005).ADSCrossRefGoogle Scholar
  4. 3.
    V. A. Soltamov, I. V. Ilyin, A. S. Gurin, D. O. Tolmachev, N. G. Romanov, E. N. Mokhov, G. V. Mamin, S. B. Orlinskii, and P. G. Baranov, Phys. Status Solidi C 10, 449 (2013).ADSCrossRefGoogle Scholar
  5. 4.
    E. N. Mokhov, T. S. Argunova, J. H. Je, O. P. Kazarova, and K. D. Shcherbachev, Cryst. Eng. Commun. 19, 3192 (2017).CrossRefGoogle Scholar
  6. 5.
    E. N. Mokhov and A. A. Wolfson, Single Crystals of Electronic Materials: Growth and Properties, Ed. by R. Fornary (Elsevier, Amsterdam, 2018).Google Scholar
  7. 6.
    V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899 (1998).ADSCrossRefGoogle Scholar
  8. 7.
    M. Kuball, Surf. Interface Anal. 31, 987 (2001).CrossRefGoogle Scholar
  9. 8.
    L. Liu, B. Liu, J. H. Edgar, S. Rajasingam, and M. Kuball, J. Appl. Phys. 92, 5183 (2002).ADSCrossRefGoogle Scholar
  10. 9.
    O. V. Avdeev, T. Yu. Chemekova, E. N. Mokhov, S. S. Nagalyuk, H. Helava, M. G. Ramm, A. S. Segal, A. I. Zhmakin, and Yu. N. Makarov, in Modern Aspects of Bulk Crystal and Thin Film Preparation (2012), p. 213.Google Scholar
  11. 10.
    E. N. Mokhov, A. D. Roenkov, Yu. A. Vodakov, et al., Mater. Sci. Forum 433–436, 979 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations