Advertisement

Semiconductors

, Volume 53, Issue 6, pp 838–843 | Cite as

Simulation Approach to Modeling of the Avalanche Breakdown of a pn Junction

  • A. S. ShashkinaEmail author
  • S. D. Hanin
PHYSICS OF SEMICONDUCTOR DEVICES
  • 3 Downloads

Abstract

The avalanche breakdown of a pn junction is investigated experimentally in order to study the temporal distribution of microplasma pulses. It is revealed that the observed type of microplasma noise is not described by the existing model of processes occurring during the avalanche breakdown of a pn junction. A computer model explaining the mechanisms of microplasma instability and taking into account the electric and temperature dependences of avalanche breakdown, which agrees with the experimental results, is developed using simulation modeling.

Notes

REFERENCES

  1. 1.
    I. V. Grekhov and Yu. N. Serezhkin, Avalanche Breakdown of a p–n Junction in Semiconductors (Energiya, Leningrad, 1980), p. 80 [in Russian].Google Scholar
  2. 2.
    M. V. Vorotkov, N. N. Skvortsov, and A. S. Shashkina, in Proceedings of the 3rd All-Russia Conference on Innovation Technologies in Media Education (SPbGIKiT, St. Petersburg, 2015), No. 3, p. 65.Google Scholar
  3. 3.
    V. K. Ionychev, Extended Abstract of Cand. Sci. Dissertation (Ogarev Mordovian State Univ., Saransk, 1999).Google Scholar
  4. 4.
    R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Bulyarskii, Yu. N. Serezhkin, and V. K. Ionychev, Semiconductors 33, 1216 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    V. K. Ionychev and A. N. Rebrov, Semiconductors 43, 948 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    A. E. Yunovich, Radiative Recombination in Semiconductors (Nauka, Moscow, 1972), p. 222 [in Russian].Google Scholar
  8. 8.
    F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge Univ. Press, Cambridge, 2006).CrossRefGoogle Scholar
  9. 9.
    A. S. Shashkina, A. V. Krivosheikin, N. N. Skvortsov, and M. V. Vorotkov, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt. 16, 864 (2016).Google Scholar
  10. 10.
    A. S. Shashkina, A. V. Krivosheikin, N. N. Skvortsov, and M. V. Vorotkov, Nauch.-Tekh. Vedom. SPbGPU, Fiz.-Mat. Nauk 253 (4), 85 (2016).Google Scholar
  11. 11.
    V. N. Ashikhmin, M. B. Gitman, I. E. Keller, O. B. Naimark, V. Yu. Stolbov, P. V. Trusov, and P. K. Frik, Introduction to Mathematical Modeling, The School-Book (Logos, Moscow, 2005) [in Russian].Google Scholar
  12. 12.
    E. M. Kudryavtsev, GPSS World. Principles of Simulation of Various Systems (DMK Press, Moscow, 2004) [in Russian].Google Scholar
  13. 13.
    A. B. Gorstko, Get to Know Mathematical Modeling (Znanie, Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    Sh. M. Kogan, Electronic Noise and Fluctuations in Solids (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  15. 15.
    J. E. Carroll, Hot Electron Microwave Generators (American Elsevier, New York, 1970).Google Scholar
  16. 16.
    V. V. Pasynkov and V. S. Sorokin, Electronic Materials (Lan’, St. Petersburg, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg University of Film and TelevisionSt. PetersburgRussia
  2. 2.Budyonny Military Academy of CommunicationsSt. PetersburgRussia

Personalised recommendations