Advertisement

Semiconductors

, Volume 53, Issue 6, pp 742–746 | Cite as

Thermoelectric Properties of Nanocomposite Bi0.45Sb1.55Te2.985 Solid Solution with SiO2 Microparticles

  • A. A. ShabaldinEmail author
  • P. P. Konstantinov
  • D. A. Kurdyukov
  • L. N. Lukyanova
  • A. Yu. Samunin
  • E. Yu. Stovpiaga
  • A. T. Burkov
XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • 9 Downloads

Abstract

Nanocomposite thermoelectrics based on Bi0.45Sb1.55Te2.985 solid solution of p-type conductivity are fabricated by the hot pressing of nanopowders of this solid solution with the addition of SiO2 microparticles. Investigations of the thermoelectric properties show that the thermoelectric power of the nanocomposites increases in a wide temperature range of 80–420 K, while the thermal conductivity considerably decreases at 80–320 K, which, despite a decrease in the electrical conductivity, leads to an increase in the thermoelectric efficiency in the nanostructured material without the SiO2 addition by almost 50% (at 300 K). When adding SiO2, the efficiency decreases. The initial thermoelectric fabricated without nanostructuring, in which the maximal thermoelectric figure of merit ZT = 1 at 390 K, is most efficient at temperatures above 350 K.

Notes

FUNDING

This study was supported by the Russian Scienсe Foundation, project no. 16-42-01067.

REFERENCES

  1. 1.
    Thermoelectrics Handbook: Macro to Nano, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 2006).Google Scholar
  2. 2.
    T. Tritt and M. Annu, Rev. Mater. Res. 41, 433 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).CrossRefzbMATHGoogle Scholar
  4. 4.
    Modules, Systems, and Applications in Thermoelectrics, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 2012).Google Scholar
  5. 5.
    B. Kamran, Fundamentals of Thermoelectricity (Oxford Univ. Press, Oxford, 2015), p. 256.Google Scholar
  6. 6.
    L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science (Washington, DC, U. S.) 329 (5993), 821 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. Taskin, Z. Ren, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. Lett. 107, 016801 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    R. Takahashi and S. Murakami, Semicond. Sci. Technol. 27, 124005 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys.: Condens. Matter 9, 461 (1997).ADSGoogle Scholar
  12. 12.
    Yu. V. Ivanov, A. T. Burkov, and D. A. Pshenay-Severin, Phys. Status Solidi B 255, 1800020 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    B. Madavali, H. S. Kim, K. H. Lee, and S. J. Hong, J. Appl. Phys. 121, 225104 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    E. B. Kim, P. Dharmaiah, D. W. Shin, K. H. Lee, and S. J. Hong, J. Alloys Compd. 703, 614 (2017).CrossRefGoogle Scholar
  15. 15.
    B. Madavali, H. S. Kim, K. H. Lee, and S. J. Hong, Intermetallics 82, 68 (2017).CrossRefGoogle Scholar
  16. 16.
    C. Li, X. Y. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, and C. Song, J. Alloys Compd. 661, 389 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Y. Li, X. Y. Qin, D. Li, J. Zhang, C. Li, Y. F. Liu, C. J. Song, H. X. Xin, and H. F. Guo, Appl. Phys. Lett. 108, 062104 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    T. Zhang, Q. S. Zhang, J. Jiang, Z. Xiong, J. M. Chen, Y. L. Zhang, W. Li, and G. J. Xu, Appl. Phys. Lett. 98, 022104 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid. J. 73, 546 (2011).CrossRefGoogle Scholar
  20. 20.
    M. V. Vedernikov, P. P. Konstantinov, and A. T. Burkov, in Proceedings of the 8th International Conference on Thermoelectric Energy Conversion (Nancy, France, 1989), p. 45.Google Scholar
  21. 21.
    A. T. Burkov, A. Heinrich, P. P. Konstantinov, T. Nakama, and K. Yagasaki, Meas. Sci. Technol. 12, 264 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Petrov, in Thermoelectrical Properties of Semiconductors (Akad. Nauk SSSR, Moscow, 1963), p. 27.Google Scholar
  23. 23.
    M. H. Cohen and J. Jortner, Phys. Rev. Lett. 30, 696 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).CrossRefGoogle Scholar
  25. 25.
    T.-H. Liu, J. Zhou, M. Li, Z. Ding, Q. Song, B. Liao, L. Fu, and G. Chen, Proc. Natl. Acad. Sci. U. S. A. 115, 879 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Shabaldin
    • 1
    Email author
  • P. P. Konstantinov
    • 1
  • D. A. Kurdyukov
    • 1
  • L. N. Lukyanova
    • 1
  • A. Yu. Samunin
    • 1
  • E. Yu. Stovpiaga
    • 1
  • A. T. Burkov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations