Advertisement

Semiconductors

, Volume 53, Issue 6, pp 784–788 | Cite as

Analysis of the Optical Properties of Plastically Deformed ZnS(O) Using Band-Anticrossing Theory

  • N. K. Morozova
  • I. N. MiroshnikovaEmail author
  • V. G. Galstyan
ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • 4 Downloads

Abstract

The cathodoluminescence and absorption of plastically deformed ZnS(O) single crystals are investigated in the light of band-anticrossing theory. The difference in the oxygen content in the surface layer and in the sample bulk is found using a scanning electron microscope and according to cathodoluminescence data. This fact explains the specifics of the spectral position of the fundamental absorption edge and exciton spectra. The shift dynamics of the bands of self-activated luminescence on deep A centers (SA luminescence) during deformation recrystallization with an increase in the dissolved oxygen concentration is presented. Restriction of the spectral range of the appearance of self-activated luminescence at shallow levels—“edge” luminescence—is established. The nature of the emission bands in the wavelength ranges of 336–350 and 364–390 nm is established. These results refine the energy model of ZnS(O) crystals and can be useful in the case of the practical use of their structure-sensitive properties.

Notes

REFERENCES

  1. 1.
    S. A. Omel’chenko, Extended Abstract of Cand. Sci. Dissertation (Solid State Phys. Inst. AS USSR, Chernogolovka, 1984).Google Scholar
  2. 2.
    B. A. Abdikamalov, S. I. Bredikhin, M. P. Kulakov, V. Sh. Shekhtman, and S. Z. Shmurak, Sov. Phys. Solid State 18, 1442 (1976).Google Scholar
  3. 3.
    N. K. Morozova and V. A. Kuznetsov, Zinc Sulfide. Production and Optical Properties (Nauka, Moscow, 1987) [in Russian].Google Scholar
  4. 4.
    N. K. Morozova, D. A. Mideros, and N. D. Danilevich, Oxygen in the Optics of II–VI Compounds in the Light of the Theory of Anti-Overlapping Zones (Lap Lambert Academic, Saarbru[umlaut]cken, Germany, 2013) [in Russian].Google Scholar
  5. 5.
    N. K. Morozova, D. A. Mideros, V. G. Galstyan, and E. M. Gavrishchuk, Semiconductors 42, 1023 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Kanakhin, Extended Abstract of Cand. Sci. Dissertation (Mosc. Power Eng. Inst., Moscow, 2015).Google Scholar
  7. 7.
    N. K. Morozova, N. D. Danilevich, and A. A. Kanakhin, Phys. Status Solidi C 7, 1501 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    N. D. Danilevich, Extended Abstract of Cand. Sci. Dissertation (Mosc. Power Eng. Inst., Moscow, 2011).Google Scholar
  9. 9.
    O. Brafman and I. T. Steinberger, Phys. Rev. 143, 501 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    N. K. Morozova, N. D. Danilevich, V. I. Oleshko, and S. S. Vil’chinskaya, Izv. Vyssh. Uchebn. Zaved., Elektron. 93, 14 (2012).Google Scholar
  11. 11.
    D. A. Mideros, Extended Abstract of Cand. Sci. Dissertation (Mosc. Power Eng. Inst., Moscow, 2008).Google Scholar
  12. 12.
    N. K. Morozova and D. A. Mideros, Izv. Vyssh. Uchebn. Zaved., Elektron. 71 (3), 3 (2008).Google Scholar
  13. 13.
    N. K. Morozova and B. N. Miroshnikov, Semiconductors 52, 278 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    N. K. Morozova, A. A. Kanakhin, and A. S. Shnitnikov, Semiconductors 50, 849 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    F. A. Kroeger and J. A. M. Dikhoff, Electrochem. Soc. 99, 144 (1952).CrossRefGoogle Scholar
  16. 16.
    I. P. Shcherbakov, A. A. Dunaev, and A. E. Chmel’, Tech. Phys. 63, 615 (2018).CrossRefGoogle Scholar
  17. 17.
    N. K. Morozova, N. D. Danilevich, V. G. Galstyan, V. I. Oleshko, and S. S. Vil’chinskaya, Izv. Vyssh. Uchebn. Zaved., Elektron. 95 (3), 3 (2012).Google Scholar
  18. 18.
    I. B. Ermolovich, A. V. Lyubchenko, and M. K. Sheinkman, Sov. Phys. Semicond. 2, 1364 (1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. K. Morozova
    • 1
  • I. N. Miroshnikova
    • 1
    • 2
    Email author
  • V. G. Galstyan
    • 3
  1. 1.National Research University “Moscow Power Engineering Institute”MoscowRussia
  2. 2.Institute of Nanotechnology of Microelectronics, Russian Academy of SciencesMoscowRussia
  3. 3.Federal Research Center “Crystallography and Photonics”, Russian Academy of SciencesMoscowRussia

Personalised recommendations