, Volume 53, Issue 6, pp 853–859 | Cite as

Composition, Structure, and Semiconductor Properties of Chemically Deposited SnSe Films

  • L. N. MaskaevaEmail author
  • E. A. Fedorova
  • V. F. Markov
  • M. V. Kuznetsov
  • O. A. Lipina


Highly adhesive tin-monoselenide (SnSe) layers (200 ± 10) nm thick are grown by hydrochemical deposition from a trilonate reactive mixture. X-ray diffraction shows that the synthesized films crystallize in the orthorhombic system (space group Pnma). The significant oxygen content in the film surface layers is explained by the partial oxidation of samples with SnO2 phase formation. The results of ion etching to a depth of 18 nm show a sharp decrease in the oxygen content over thickness and real correspondence to the SnSe elemental composition. The band gap determined by optical studies for direct transitions is 1.69 eV. The synthesized SnSe layers exhibit p-type conductivity, which is characteristic of this material.



This study was supported by program 211 of the Government of the Russian Federation no. 02.А03.21.0006.

Optical measurements were performed within the program of the Ministry of Science and Higher Education of the Russian Federation no. АААА-А16-116122810218-7.


  1. 1.
    N. R. Mathews, Sol. Energy 86, 1010 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    V. R. M. Reddy, S. Gedi, B. Pejjai, and C. Park, J. Mater. Sci.: Mater. Electron. 27, 5491 (2016).Google Scholar
  3. 3.
    T. M. Razykov, K. M. Kuchkarov, B. A. Ergashev, R. T. Juldoshov, and O. M. Tursunkulov, Geliotekhnika 2, 3 (2017).Google Scholar
  4. 4.
    G. Jeong, J. Kim, O. Gunawan, S. R. Pae, S. H. Kim, J. Y. Song, Y. S. Lee, and B. Shin, J. Alloys Compd. 722, 474 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Zakutayev, Curr. Opin. Green Sustainable Chem. 4, 8 (2017).CrossRefGoogle Scholar
  6. 6.
    L. C. Zhang, Sci. Rep. 6, 19830 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Boiko, V. I. Garber, and A. M. Kosevich, Reversible Plasticity of Crystals (Nauka, Moscow, 1991) [in Russian].Google Scholar
  8. 8.
    M. Wu and X. C. Zeng, Nano Lett. 16, 3236 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Chernozatonskii and A. A. Artyukh, Phys. Usp. 61, 2 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    G. Jeong, J. Kim, O. Gunawan, S. R. Pae, S. H. Kim, J. Y. Song, Y. S. Lee, and B. Shin, J. Alloys Compd. 722, 474 (2017).CrossRefGoogle Scholar
  11. 11.
    M. R. Burton, T. J. Liu, J. McGettrick, S. Mehraban, J. Baker, A. Pockett, T. Watson, O. Fenwick, and M. J. Carnie, Adv. Mater. 30, 1801357 (2018).CrossRefGoogle Scholar
  12. 12.
    T. M. Razykova, G. S. Boltaev, A. Bosio, B. Ergashev, K. M. Kouchkarov, N. K. Mamarasulov, A. A. Mavlonov, A. Romeo, N. Romeo, O. M. Tursunkulov, and R. Yuldoshov, Sol. Energy 159, 834 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    K. S. Urmila, T. A. Namitha, J. Rajani, R. R. Philip, and B. Pradeep, J. Semicond. 37, 093002 (2016).Google Scholar
  14. 14.
    V. F. D’yakov, V. F. Markov, L. N. Maskaeva, M. P. Mironov, and N. A. Tret’yakova, Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol. 51, 37 (2008).Google Scholar
  15. 15.
    M. P. Mironov, L. D. Loshkareva, L. N. Maskaeva, and V. F. Markov, Butler. Soobshch. 19, 25 (2010).Google Scholar
  16. 16.
    E. Barrios-Salgado, M. T. S. Nair, and P. K. Nair, ECS J. Solid State Sci. Technol. 3, Q169 (2014).CrossRefGoogle Scholar
  17. 17.
    V. R. Solanki, R. J. Parmar, R. J. Pathak, and M. D. Parmar, AIP Conf. Proc. 1837, 040019 (2017).CrossRefGoogle Scholar
  18. 18.
    P. K. Nair, A. K. Martínez, A. R. G. Angelmo, E. B. Salgado, and M. T. S. Nair, Semicond. Sci. Technol. 33, 035004 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    M. V. Kuznetsov, Modern Methods of Studying the Solid Surface: Photoelectron Spectroscopy and Diffraction, STM-Microscopy (UrO RAN, Ekaterinburg, 2010) [in Russian].Google Scholar
  20. 20.
    A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid-State Photoelectronics. Physical Fundamentals (Fizmatkniga, Moscow, 2007) [in Russian].Google Scholar
  21. 21.
    V. F. Markov and L. N. Maskaeva, Russ. Chem. Bull. 63, 1523 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Badrinarayanan, A. B. Mandale, V. G. Gunjikar, and A. P. B. Sinha, J. Mater. Sci. 21, 3333 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    S. Gubbala, H. B. Russell, H. Shah, B. Deb, J. Jasinski, H. Rypkemac, and M. K. Sunkara, Energy Environ. Sci. 2, 1302 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Wu, S. Yuan, L. Shi, Y. Zhao, and J. Fang, J. Colloid Interface Sci. 346, 12 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    M. Kwoka, G. Czempik, and J. Szuber, Acta Phys. Slov. 55, 331 (2005).Google Scholar
  26. 26.
    Y. C. Her, J. Y. Wu, Y. R. Lin, and S. Y. Tsai, Appl. Phys. Lett. 89, 043115 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    E. P. Domashevskaya, S. V. Ryabtsev, S. Yu. Turishchev, V. M. Kashkarov, Yu. A. Yurakov, O. A. Chuvenkova, and A. V. Shchukarev, Kondens. Sredy Mezhfaz. Granitsy 10, 98 (2008).Google Scholar
  28. 28.
    Q. Han, Y. Zhu, X. Wang, and W. Ding, J. Mater. Sci. 39, 4643 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    N. D. Boscher, C. J. Carmalt, R. G. Palgrave, and I. P. Parkin, Thin Solid Films 516, 4750 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    L. L. Ma, Z. D. Cui, Z. Y. Li, S. L. Zhu, Y. Q. Liang, Q. W. Yin, and X. J. Yang, Mater. Sci. Eng. B 178, 77 (2013).CrossRefGoogle Scholar
  31. 31.
    K. Ananthi, K. Thilakavathy, N. Muthukumarasamy, S. Dhanapandian, and K. R. Murali, J. Mater. Sci.: Mater. Electron. 23, 1338 (2012).Google Scholar
  32. 32.
    Z. I. Smirnova, L. N. Maskaeva, V. F. Markov, V. I. Voronin, and M. V. Kuznetsov, Kondens. Sredy Mezhfaz. Granitsy 14, 250 (2012).Google Scholar
  33. 33.
    O. A. Chuvenkova, E. P. Domashevskaya, S. V. Ryabtsev, Yu. A. Yurakov, A. E. Popov, D. A. Koyuda, D. N. Nesterov, D. E. Spirin, R. Yu. Ovsyannikov, and S. Yu. Turishchev, Phys. Solid State 57, 153 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    R. Drevet, D. Dragoé, M. G. Barthés-Labrousse, A. Chaussé, and M. Andrieux, Appl. Surf. Sci. 384, 442 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    V. B. Spivakovskii, Analytical Chemistry of Tin (Nauka, Moscow, 1975) [in Russian].Google Scholar
  36. 36.
    L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature (London, U.K.) 508 (7496), 373 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    C. W. Li, J. Hong, A. F. May, D. Bansal, S. Shi, T. Hong, G. Ehlers, and O. Delaire, Nat. Phys. 11, 1063 (2015).CrossRefGoogle Scholar
  38. 38.
    B. Subramanian, T. Mahalingam, C. Sanjeeviraja, M. Jayachandran, and M. J. Chockalingam, Thin Solid Films 357, 119 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    E. Barrios-Salgado, M. T. S. Nair, and P. K. Nair, Thin Solid Films 598, 149 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    V. Kumar, P. Kumar, S. Yadav, V. Kumar, M. K. Bansal, and D. K. Dwivedi, Mater. Sci.: Mater. Electron. 27, 4043 (2016).Google Scholar
  41. 41.
    M. Thirumoorthi and J. T. J. Prakash, Superlatt. Microstruct. 89, 378 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    A. Abdelkrima, S. Rahmane, O. Abdelouahab, N. Abdelmalek, and G. Brahim, Optik 127, 2653 (2016).ADSCrossRefGoogle Scholar
  43. 43.
    Z. V. Borges, C. M. Poffo, J. C. de Lima, S. M. de Souza, D. M. Trichês, T. P. O. Nogueira, L. Manzato, and R. S. de Biasi, Mater. Chem. Phys. 169, 47 (2016).CrossRefGoogle Scholar
  44. 44.
    A. A. Yadav, S. C. Pawar, D. H. Patil, and M. D. Ghogare, J. Alloys Compd. 652, 145 (2015).CrossRefGoogle Scholar
  45. 45.
    B. Pejova and I. Grozdanov, Thin Solid Films 515, 5203 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    A. I. Gusev, Nanocrystalline Materials: Production Methods and Properties (UrO RAN, Ekaterinburg, 1998) [in Russian].Google Scholar
  47. 47.
    N. Kumar, U. Parihar, R. Kumar, K. J. Patel, C. J. Panchal, and N. Padha, Am. J. Mater. Sci. 2, 41 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. N. Maskaeva
    • 1
    • 2
    Email author
  • E. A. Fedorova
    • 1
  • V. F. Markov
    • 1
    • 2
  • M. V. Kuznetsov
    • 3
  • O. A. Lipina
    • 3
  1. 1.Ural Federal University named after the first President of Russia B.N. YeltsinYekaterinburgRussia
  2. 2.Ural Institute of State Fire Service of EMERCOM of RussiaYekaterinburgRussia
  3. 3.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations