, Volume 52, Issue 15, pp 1953–1957 | Cite as

Dependence of Mechanical Stresses in Silicon Nitride Films on the Mode of Plasma-Enhanced Chemical Vapor Deposition

  • A. V. NovakEmail author
  • V. R. Novak
  • A. A. Dedkova
  • E. E. Gusev


Films of silicon nitride SiNx, obtained by plasma-enhanced chemical vapor deposition from the monosilane SiH4 and ammonia NH3 gases, are widely used in microelectronics and micro- and nanoelectromechanical systems. Residual mechanical stresses and film composition are important characteristics for many applications. The properties of SiNx films, particularly mechanical stresses and composition, depend largely on the conditions of production, e.g., the ratio of the reacting gas flow rates, the composition of the gas mixture, the power and frequency of the plasma generator, and the temperature and pressure during deposition. Despite the great volume of works on the subject, data regarding the dependence of the properties and composition of SiNx films on the conditions of production remain sparse. This work considers the effect the ratio of the reacting gas flow rates has on the mechanical stresses and composition of silicon nitride films SiNx obtained by plasma-enhanced chemical vapor deposition from gaseous mixtures of SiH4 monosilane and NH3 ammonia using low-frequency plasma. It is found that when the ratio of the gas flow rates of SiH4 and NH3 is raised from 0.016 to 0.25, the compressive mechanical stresses are reduced by 31%, the stoichiometric coefficient falls from 1.40 to 1.20, the refractive index rises from 1.91 to 2.08, the concentration of N–H bonds is reduced by a factor of 7.4, the concentration of Si–H bonds grows by a factor of 8.7, and the concentration of hydrogen atoms is reduced by a factor of 1.5. These results can be used for the controlled production of SiNx films with such specified characteristics as residual mechanical stresses, refractive index, stoichiometric coefficient, and the concentration of hydrogen-containing bonds.


films of PECVD silicon nitride SiNx mechanical stresses IR Fourier spectroscopy optical profilometry 



This work was supported by the RF Ministry of Education and Science, agreement no. 14.578.21.0188, unique identifier RFMEFI57816X0188. Some measurements were made on equipment at the Microsystem Equipment and Electronic Component Base shared resource center of National Research University (MIET).


  1. 1.
    D. R. Cote, S. V. Nguyen, A. K. Stamper, et al., IBM J. Res. Develop. 43, 5 (1999).CrossRefGoogle Scholar
  2. 2.
    L. Liang, L. Wei-guo, C. Na, and C. Chang-long, Defence Technol. 9, 121 (2013).CrossRefGoogle Scholar
  3. 3.
    K. Tokunaga and K. Sugawara, J. Electrochem. Soc. 138, 176 (1991).CrossRefGoogle Scholar
  4. 4.
    V. Ya. Prints and S. V. Golod, Prikl. Mekh. Tekh. Fiz. 47, 114 (2006).Google Scholar
  5. 5.
    S. E. Thompson, G. Sun, Y. S. Choi, and T. Nishida, IEEE Trans. Electron Dev. 53, 1010 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    I. I. Rubtsevich, Ya. A. Solov’ev, V. B. Vysotskii, et al., Tekhnol. Konstruir. Elektron. Appar., No. 4, 29 (2011).Google Scholar
  7. 7.
    K. D. Mackenzie, D. J. Johnson, M. W. DeVre, et al., in Proceedings of the 207th Electrochemical Society Meeting, Quebec City, Canada, May 2005 (2005).Google Scholar
  8. 8.
    Li Dong-ling, Feng Xiao-fei, Wen Zhi-yu, et al., Optoelectron. Lett. 12, 0285 (2016).Google Scholar
  9. 9.
    Z. Yin and F. W. Smith, Phys. Rev. B 42, 3666 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    I. V. Kutkov and M. I. Pekhtelev, Dokl. TUSURa 31 (1), 92 (2014).Google Scholar
  11. 11.
    E. Cianci, F. Pirola, and V. Foglietti, J. Vac. Sci. Technol., B 23, 168 (2005).CrossRefGoogle Scholar
  12. 12.
    L. L. Vanzetti, M. Barozzi, D. Giubertoni et al., Surf. Interface Anal. 38, 723 (2006).CrossRefGoogle Scholar
  13. 13.
    R. Glang, R. A. Holmwood, and R. L. Rosenfeld, Rev. Sci. Instrum. 36, 7 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    A. K. Sinha, H. J. Levinstein, and T. E. Smith, J. Appl. Phys. 49, 2423 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    N. A. Dyuzhev, A. A. Dedkova, E. E. Gusev, and A. V. Novak, Izv. Vyssh. Uchebn. Zaved., Elektron. 21, 367 (2016).Google Scholar
  16. 16.
    V. A. Gritsenko, Phys. Usp. 51, 699 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    W. A. Lanford and M. J. Rand, J. Appl. Phys. 49, 2473 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Novak
    • 1
    • 2
    Email author
  • V. R. Novak
    • 3
  • A. A. Dedkova
    • 1
  • E. E. Gusev
    • 1
  1. 1.National Research University (MIET)MoscowRussia
  2. 2.JSC AngstremMoscowRussia
  3. 3.Lukin Research Institute of Physical ProblemsMoscowRussia

Personalised recommendations