Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1843–1845 | Cite as

Ultrathin Barrier InAlN/GaN Heterostructures for HEMTs

  • A. V. SakharovEmail author
  • W. V. Lundin
  • E. E. Zavarin
  • D. A. Zakheim
  • S. O. Usov
  • A. F. Tsatsulnikov
  • M. A. Yagovkina
  • P. E. Sim
  • O. I. Demchenko
  • N. Y. Kurbanova
  • L. E. Velikovskiy
NANOSTRUCTURE DEVICES
  • 22 Downloads

Abstract

InAlN/AlN/GaN semiconductor heterostructures with a barrier thickness of 5–13 nm have been grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire and SiC substrates. Optimization of GaN buffer and InAlN layers allows fabricating structures with sheet conductivity values below 210 Ohm/sq. High electron mobility transistors (HEMTs) fabricated from such structures show drain current value exceeding 1.25 A/mm with maximum transconductance of 450 mS/mm. Use of thin in situ Si3N4 capping allows to fabricate and compare HEMT and MIS-HEMTs.

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Ministry of Education and Science of the Russian Federation, agreement no. 14.578.21.0240 from September 26, 2017, unique project identifier is RFMEFI57817X0240. The X-ray characterizations were performed using equipment owned by the Joint Research Center “Material science and characterization in advanced technology” (Ioffe Institute, St.-Petersburg, Russia).

REFERENCES

  1. 1.
    J. Kuzmık, IEEE Electron Dev. Lett. 22, 510 (2001).CrossRefGoogle Scholar
  2. 2.
    Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, F. Faria, T. Fang, B. Song, and X. Gao, IEEE Electron Dev. Lett. 33, 988 (2012).CrossRefGoogle Scholar
  3. 3.
    H. Wang, J. W. Chung, X. Gao, Sh. Guo, and T. Palacios, Phys. Status Solidi C 7, 2440 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, Appl. Phys. Lett. 89, 062106 (2006).CrossRefGoogle Scholar
  5. 5.
    H. Sun, A. R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N. Grandjean, and C. R. Bolognesi, IEEE Electron Dev. Lett. 31, 957 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Tirelli, D. Marti, H. Sun, A. R. Alt, J.-F. Carlin, N. Grandjean, and C. R. Bolognesi, IEEE Electron Dev. Lett. 32, 1364 (2011).CrossRefGoogle Scholar
  7. 7.
    E. Arslan, S. Bütün, Y. Safak, and E. Ozbay, J. Electron. Mater. 39, 2681 (2010).CrossRefGoogle Scholar
  8. 8.
    A. F. Tsatsulnikov, V. W. Lundin, E. E. Zavarin, M. A. Yagovkina, A. V. Sakharov, S. O. Usov, V. E. Zemlyakov, V. I. Egorkin, K. A. Bulashevich, S. Yu. Karpov, and V. M. Ustinov, Semiconductors 50, 1383 (2016).CrossRefGoogle Scholar
  9. 9.
    http://www.str-soft.com/products/FETIS/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Sakharov
    • 1
    Email author
  • W. V. Lundin
    • 1
  • E. E. Zavarin
    • 1
  • D. A. Zakheim
    • 1
  • S. O. Usov
    • 2
  • A. F. Tsatsulnikov
    • 2
  • M. A. Yagovkina
    • 1
  • P. E. Sim
    • 3
  • O. I. Demchenko
    • 3
  • N. Y. Kurbanova
    • 3
  • L. E. Velikovskiy
    • 3
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Tomsk State UniversityTomskRussia

Personalised recommendations