Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1822–1826 | Cite as

Experimental Study of Spontaneous Emission in the Bragg Multiple Quantum Wells Structure of InAs Monolayers Embedded in a GaAs Matrix

  • G. Pozina
  • M. A. Kaliteevski
  • E. V. Nikitina
  • A. R. Gubaidullin
  • K. M. Morozov
  • E. I. Girshova
  • K. A. IvanovEmail author
  • A. Yu. Egorov
MICROCAVITY AND PHOTONIC CRYSTALS
  • 33 Downloads

Abstract

Time-resolved photoluminescence of a Bragg structure of InAs-monolayer quantum wells in GaAs matrix was experimentally studied with. Comparison of luminescence patterns from the side and from the surface of a sample showed that Bragg-type ordering of quantum wells leads to a substantial alteration of the photoluminescence spectra including appearance of additional radiative modes. The sample side spectrum contains a single line corresponding to a ground state of an exciton. The surface spectrum at high excitation levels a new radiation line appears whose frequency and propagation angle correspond to the Bragg condition for quantum wells. A numerical calculation of the modal Purcell factor explains why the radiative emission amplification occurs only at a set of specific angles and frequencies, as opposed to the whole range that satisfies the Bragg condition.

Notes

ACKNOWLEDGMENTS

This work was funded by the Russian Science Foundation grant no. 16-12-10503.

REFERENCES

  1. 1.
    E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).CrossRefGoogle Scholar
  2. 2.
    V. P. Bykov, Sov. Phys. JETP 35, 269 (1972).Google Scholar
  3. 3.
    P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, New York, 2005).Google Scholar
  4. 4.
    E. L. Ivchenko and G. Pikus, Superlattices and other Heterostructures: Symmetry and Optical Phenomena (Springer Science, New York, 2012).zbMATHGoogle Scholar
  5. 5.
    E. Ivchenko, A. Nesvizhskii, and S. Jorda, Phys. Solid State 36, 1156 (1994).Google Scholar
  6. 6.
    E. Ivchenko, M. Kaliteevski, A. Kavokin, and A. Nesvizhskii, J. Opt. Soc. Am. B 13, 1061 (1996).CrossRefGoogle Scholar
  7. 7.
    V. V. Chaldyshev et al., Appl. Phys. Lett. 98, 073112 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Bolshakov, V. V. Chaldyshev, E. E. Zavarin, A. V. Sakharov, V. V. Lundin, and A. F. Tsatsulnikov, Semiconductors 50, 1431 (2016).CrossRefGoogle Scholar
  9. 9.
    G. Pozina et al., Sci. Rep. 5, 14911 (2015).CrossRefGoogle Scholar
  10. 10.
    R. H. Dicke, Phys. Rev. 93, 99 (1954).CrossRefGoogle Scholar
  11. 11.
    A. Gubaydullin et al., Sci. Rep. 7, 9014 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Askitopoulos et al., Phys. Rev. Lett. 106, 076401 (2011).CrossRefGoogle Scholar
  13. 13.
    L. I. Deych and A. A. Lisyansky, Phys. Rev. B 62, 4242 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Kaliteevski, V. Mazlin, K. Ivanov, and A. Gubaydullin, Opt. Spectrosc. 119, 832 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. Pozina
    • 1
  • M. A. Kaliteevski
    • 2
    • 3
    • 4
  • E. V. Nikitina
    • 2
    • 3
  • A. R. Gubaidullin
    • 2
    • 4
  • K. M. Morozov
    • 2
  • E. I. Girshova
    • 2
  • K. A. Ivanov
    • 4
    Email author
  • A. Yu. Egorov
    • 2
    • 3
    • 4
  1. 1.Department of Physics, Chemistry and Biology (IFM), Linkoping UniversityLinkopingSweden
  2. 2.St. Petersburg Academic UniversitySt. PetersburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia
  4. 4.ITMO UniversitySt. PetersburgRussia

Personalised recommendations