Advertisement

Semiconductors

, Volume 52, Issue 13, pp 1643–1652 | Cite as

McCurdy’s Effects in the Thermal Conductivity of Elastically Anisotropic Crystals in the Mode of Knudsen Phonon-Gas Flow

  • I. G. KuleyevEmail author
  • I. I. Kuleyev
  • S. M. Bakharev
NONELECTRONIC PROPERTIES OF SEMICONDUCTORS (ATOMIC STRUCTURE, DIFFUSION)
  • 14 Downloads

Abstract

The influence of phonon focusing on phonon transport in semiconductor and dielectric crystals with different types of elastic-energy anisotropy at low temperatures is investigated. McCurdy’s effects in the thermal conductivity of elastically anisotropic crystals in the mode of Knudsen phonon gas flow are calculated. The influence of phonon focusing on the propagation and boundary scattering of phonons in samples with square and rectangular cross sections is analyzed, and a physical explanation of McCurdy’s effects is given.

Notes

ACKNOWLEDGMENTS

This study was performed within a government contract on the subject “Spin” AAAA-A18-118020290104-2 and supported by project no. 32-1.1.3.5 of the Program of Fundamental Research of the Presidium of the Russian Academy of Sciences, according to contract no. 14.Z50.31.0025 with the Ministry of Education and Science of the Russian Federation.

REFERENCES

  1. 1.
    A. K. McCurdy, H. J. Maris, and C. Elbaum, Phys. Rev. B 2, 4077 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    H. J. Maris, J. Acoust. Soc. Am. 50, 812 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Wolfe, Imaging Phonons Acoustic Wave Propagation in Solids (Cambridge Univ. Press, New York, 1998).CrossRefGoogle Scholar
  5. 5.
    H. B. G. Casimir, Physica 5, 495 (1938).ADSCrossRefGoogle Scholar
  6. 6.
    I. I. Kuleev, I. G. Kuleev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55, 31 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Status Solidi B 251, 991 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. B (Amsterdam, Neth.) 416, 81 (2013).Google Scholar
  9. 9.
    H. J. Maris and S. Tamura, Phys. Rev. B 85, 054304 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    N. Mingo, Phys. Rev. B 68, 113308 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    Y. F. Zhu, J. S. Lian, and Q. Jiang, Appl. Phys. Lett. 92, 113101 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, and H. J. Maris, J. Appl. Phys. 93, 793 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. McConnell and K. E. Goodson, Ann. Rev. Heat Transf. 14, 129 (2005).CrossRefGoogle Scholar
  14. 14.
    D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarkce, S. Fan, and K. E. Goodson, J. Appl. Phys. Rev. 1, 011305 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    I. I. Kuleyev, I. G. Kuleyev, and S. M. Bakharev, J. Exp. Theor. Phys. 119, 460 (2014).CrossRefGoogle Scholar
  16. 16.
    Z. Aksamija and I. Knezevic, Phys. Rev. B 82, 045319 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49, 437 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    I. I. Kuleev, S. M. Bakharev, I. G. Kuleev, and V. V. Ustinov, Phys. Met. Metallogr. 118, 10 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    I. I. Kuleyev, I. G. Kuleyev, and S. M. Bakharev, Phys. Status Solidi C 14, 1600263 (2017).Google Scholar
  20. 20.
    K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).ADSCrossRefGoogle Scholar
  21. 21.
    E. H. Sondheimer, Adv. Phys. 1, 1 (1952).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. G. Kuleyev
    • 1
    Email author
  • I. I. Kuleyev
    • 1
  • S. M. Bakharev
    • 1
  1. 1.Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations