Advertisement

Semiconductors

, Volume 52, Issue 12, pp 1551–1558 | Cite as

Nonuniversal Scaling Behavior of Conductivity Peak Widths in the Quantum Hall Effect in InGaAs/InAlAs Structures

  • S. V. GudinaEmail author
  • Yu. G. Arapov
  • E. I. Ilchenko
  • V. N. Neverov
  • A. P. Savelyev
  • S. M. Podgornykh
  • N. G. Shelushinina
  • M. V. Yakunin
  • I. S. Vasil’evskii
  • A. N. Vinichenko
XXII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 12–15, 2018
  • 47 Downloads

Abstract

The longitudinal ρxx and Hall ρxy resistances were measured in the region of the quantum phase transitions for the quantum Hall effect regime with magnetic fields up to 12 T at temperatures of T = 0.4–30 K in two-dimensional electron systems n-In0.9Ga0.1As/In0.81Al0.19As. The nonuniversal scaling behavior of the temperature dependence of the width of the resistance ρxx peaks related to the effect of the large-scale random potential and of Landau-level mixing with opposite spin directions was found.

Notes

ACKNOWLEDGMENTS

The work was carried out within the framework of the state task of the Russian Federal Agency of Scientific Organizations (“Electron”, no. AAAA-A18-118020190098-5) and Project no. 18-10-2-6 of the program of the Ural Branch, Russian Academy of Sciences, supported by the Russian Foundation for Basic Research: project nos. 18-02-00172 (samples) and 18-32-00382 (experimental results) and 18-02-00192 (theoretical support).

The work was carried out using equipment of the Center for Collective Use of the National Research Nuclear University MEPhI “Heterostructural Microwave Electronics and Wide-Gap Semiconductors”. Measurements are performed on equipment of the Collaborative Access Center “Testing Center of Nanotechnology and Advanced Materials” of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

REFERENCES

  1. 1.
    A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    A. M. M. Pruisken, Int. J. Mod. Phys. B 24, 1895 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    J. T. Chalker and P. D. Coddington, J. Phys. C: Sol. St. Phys. 21, 2665 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    W. Li, J. S. Xia, C. Vicente, N. S. Sullivan, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 81, 033305 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    N. Q. Balaban, U. Meirav, and I. Bar-Joseph, Phys. Rev. Lett. 81, 4967 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    J. Wakabayashi, M. Yamane, and S. Kawaji, J. Phys. Soc. Jpn. 58, 1903 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 883 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev. B 43, 6828 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    D. Shahar, M. Hilke, C. C. Li, D. C. Tsui, S. L. Sondhi, J. E. Cunningham, and M. Razeghi, Solid State Commun. 107, 19 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi, Phys. Rev. Lett. 79, 479 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    P. T. Coleridge, Solid State Commun. 112, 241 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    R. T. F. van Schaijk, A. deVisser, S. Olsthoorn, H. P. Wei, and A. M. M. Pruisken, Phys. Rev. Lett. 84, 1567 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    Yu. G. Arapov, G. A. Alshanskii, G. I. Harus, V. N. Neverov, N. G. Shelushinina, M. V. Yakunin, and O. A. Kuznetsov, Nanotechnology 13, 86 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    L. Wang, T. Tu, C. Zhou, Y-J. Zhao, G-C. Guo, and G-P. Guo, Mod. Phys. Lett. 27, 1350202 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Wang, D-H. Lee, and X- G. Wen, Phys. Rev. Lett. 72, 2454 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    D. K. Lee and J. T. Chalker, Phys. Rev. Lett. 72, 1510 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    G. Xiong, S.-D. Wang, Q. Niu, Y. Wang, X. C. Xie, D.-C. Tian, and X. R. Wang, J. Phys.: Condens. Matter 18, 2029 (2006).ADSGoogle Scholar
  21. 21.
    G. Xiong, S.-D. Wang, Q. Niu, Y. Wang, and X. R. Wang, Eur. Phys. Lett. 82, 47008 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    F. W. VanKeuls, H. W. Jiang, and A. J. Dahm, Czech. J. Phys. 46 (S5), 2467 (1996).CrossRefGoogle Scholar
  23. 23.
    R. Meisels, F. Kuchar, W. Belitsch, and B. Kramer, Microelectron. Eng. 47, 23 (1999).CrossRefGoogle Scholar
  24. 24.
    D. G. Polyakov and M. E. Raikh, Phys. Rev. Lett. 75, 1368 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    S. W. Hwang, H. P. Wei, L. V. Engel, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B 48, 11416 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui, Phys. Rev. Lett. 71, 2638 (1993).ADSCrossRefGoogle Scholar
  27. 27.
    H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 50, 14609 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    Y. J. Zhao, T. Tu, X. J. Hao, G. C. Guo, H. W. Jiang, and G. P. Guo, Phys. Rev. B 78, 233301 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    S. V. Gudina, Yu. G. Arapov, A. P. Savelyev, V. N. Neverov, S. M. Podgornykh, N. G. Shelushinina, M. V. Yakunin, K. Rogacki, I. S. Vasil’evskii, and A. N. Vinichenko, J. Magn. Magn. Mater. 440, 10 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    I. S. Vasil’evskii, S. S. Pushkarev, M. M. Grekhov, A. N. Vinichenko, D. V. Lavrukhin, and O. S. Kolentsova, Semiconductors 50, 559 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, A. L. Kvanin, S. S. Pushkarev, and M. A. Pushkin, Semiconductors 45, 1158 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    Yu. G. Arapov, S. V. Gudina, A. S. Klepikova, V. N. Neverov, S. G. Novokshonov, G. I. Kharus, N. G. Shelushinina, and M. V. Yakunin, J. Exp. Theor. Phys. 117, 144 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    A. J. M. Giesbers, U. Zeitler, L. A. Ponomarenko, R. Yang, K. S. Novoselov, A. K. Geim, and J. C. Maan, Phys. Rev. B 80, 241411(R) (2009).Google Scholar
  34. 34.
    T. Khouri, M. Bendias, P. Leubner, C. Brune, H. Buhmann, L. W. Molenkamp, U. Zeitler, N. E. Hussey, and S. Wiedmann, Phys. Rev. B 93, 125308 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    H. P. Wei, S. Y. Lin, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B 45, 3926(R) (1992).Google Scholar
  36. 36.
    W. Li, G. A. Csáthy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 206807 (2005).ADSCrossRefGoogle Scholar
  37. 37.
    B. Karmakar, M. R. Gokhale, A. P. Shah, B. M. Arora, D. T. N. deLang, A. deVisser, L. A. Ponomarenko, and A. M. M. Pruisken, Phys. E (Amsterdam, Neth.) 24, 187 (2004).Google Scholar
  38. 38.
    A. M. M. Pruisken and I. S. Burmistrov, JETP Lett. 87, 220 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    I. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin, Ann. Phys. 326, 1457 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S. M. Podgornykh, M. R. Popov, G. I. Harus, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretskiy, Semiconductors 49, 1545 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    S. Koch, R. J. Haug, K. v. Klitzing, and K. Ploog, Semicond. Sci. Technol. 10, 209 (1995).ADSCrossRefGoogle Scholar
  42. 42.
    K.-H. Yoo, H. C. Kwon, and J. C. Park, Solid State Commun. 92, 821 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    F. Hohls, U. Zeitler, and R. J. Haug, Phys. Rev. Lett. 88, 036802 (2002).ADSCrossRefGoogle Scholar
  44. 44.
    N. A. Dodoo-Amoo, K. Saeed, D. Mistry, S. P. Khanna, L. Li, E. N. Linfield, A. G. Davies, and J. E. Cunningham, J. Phys.: Condens. Matter 26, 475801 (2014).ADSGoogle Scholar
  45. 45.
    W. Li, G. H. Csathy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 83, 2832 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    A. M. M. Pruisken, C. B. Scoric, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999).ADSCrossRefGoogle Scholar
  47. 47.
    C.-H. Liu,  P.-H. Wang,  T.-P. Woo,  F.-Y. Shih, S.-C. Liou, P.-H. Ho, C.-W. Chen, C.-T. Liang, and W.-H. Wang, Phys. Rev. B 93, 041421(R) (2016).Google Scholar
  48. 48.
    D. H. Lee and Z. Wang, Phys. Rev. Lett. 76, 4014 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    A. M. M. Pruisken and M. A. Baranov, Europhys. Lett. 31, 543 (1995).ADSCrossRefGoogle Scholar
  50. 50.
    A. M. Finkelstein, Int. J. Mod. Phys. B 24, 1855 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    Yu. G. Arapov, S. V. Gudina, A. S. Klepikova, V. N. Neverov, G. I. Harus, N. G. Shelushinina, and M. V. Yakunin, Low Temp. Phys. 41, 106 (2015).ADSCrossRefGoogle Scholar
  52. 52.
    S. V. Gudina, Yu. G. Arapov, A. P. Saveliev, V. N. Neverov, S. M. Podgornykh, N. G. Shelushinina, M. V. Yakunin, I. S. Vasil’evskii, and A. N. Vinichenko, unpublished.Google Scholar
  53. 53.
    S. V. Gudina, E. V. Il’chenko, V. N. Neverov, S. M. Podgornykh, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretskii, in Proceedings of the 13 Russian Conference on Semiconductor Physics, Ekaterinburg, 2017, p. 174.Google Scholar
  54. 54.
    A. L. Efros, Phys. Rev. B 45, 11354 (1992).ADSCrossRefGoogle Scholar
  55. 55.
    N. R. Cooper and J. T. Chalker, Phys. Rev. B 48, 4530 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Gudina
    • 1
    Email author
  • Yu. G. Arapov
    • 1
  • E. I. Ilchenko
    • 1
  • V. N. Neverov
    • 1
  • A. P. Savelyev
    • 1
  • S. M. Podgornykh
    • 1
    • 2
  • N. G. Shelushinina
    • 1
  • M. V. Yakunin
    • 1
    • 2
  • I. S. Vasil’evskii
    • 3
  • A. N. Vinichenko
    • 3
  1. 1.Miheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations