Advertisement

Semiconductors

, Volume 52, Issue 8, pp 1022–1026 | Cite as

Photoluminescence of ZnS:Cu in a Polymethyl Methacrylate Matrix

  • V. P. Smagin
  • N. S. Eremina
  • M. S. Leonov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The method of agents arising directly in the (poly)methyl methacrylate medium is used to synthesize ZnS:Cu quantum dots fixed in an optically transparent polymer matrix. The optical transmittance of the polymer composites in the visible spectral region reaches 92% (at the thickness 5 mm). The photoluminescence of the (poly)methyl methacrylate/ZnS:Cu composite is defined by defects in the crystal structure of ZnS and by the system of energy levels in the band gap of ZnS. The photoluminescence signal depends on the Cu-ion concentration, the reabsorption of radiation in ZnS and (poly)methyl methacrylate, and other factors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Ovchinnikov, A. N. Latyshev, and M. S. Smirnov, Kondens. Sredy Mezhfaz. Granitsy 7, 413 (2005).Google Scholar
  2. 2.
    J. Planelles-Aragó, B. Julián-López, E. Cordoncillo, P. Escribano, F. Pelle, B. Viana, and C. Sanchez, J. Mater. Chem. 18, 5193 (2008).CrossRefGoogle Scholar
  3. 3.
    T. N. Shcherba, K. V. Lupandina, M. P. Zhilenko, G. P. Murav’eva, G. V. Erlikh, and G. V. Lisichkin, Russ. Chem. Bull. 60, 1571 (2011).CrossRefGoogle Scholar
  4. 4.
    J. M. Montenegro, W. J. Parak, V. Grazu, J. M. de la Fuente, A. Sukhanova, I. Nabiev, S. Agarwal, and A. Greiner, Adv. Drug Deliv. Rev. 65, 677 (2013).CrossRefGoogle Scholar
  5. 5.
    X. Gong, Z. Yang, G. Walters, R. Comin, Z. Nihg, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, Nat. Photon. 10, 253 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Dayneko, P. S. Samokhvalov, D. Lypenko, G. I. Nosova, I. A. Berezin, A. V. Yakimanskii, A. A. Chistyakov, and I. Nabiev, Opt. Spectrosc. 122, 12 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Zvaigzne, I. L. Martynov, V. A. Krivenkov, P. S. Samokhvalov, and I. R. Nabiev, Opt. Spectrosc. 122, 69 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. 84, 2841 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    T. N. Shcherba, Extended Abstract of Cand. Sci. Dissertation (Mosc. State Univ., Moscow, 2011).Google Scholar
  10. 10.
    E. Yu. Gotovtseva, A. A. Biryukov, and V. A. Svetlichnyi, Russ. Phys. J. 56, 273 (2013).CrossRefGoogle Scholar
  11. 11.
    V. P. Smagin, D. A. Davydov, N. M. Unzhakova, and A. A. Biryukov, Russ. J. Inorg. Chem. 60, 1588 (2015).CrossRefGoogle Scholar
  12. 12.
    V. P. Smagin, D. A. Davydov, and N. M. Unzhakova, RF Patent No. 2561287 (2015).Google Scholar
  13. 13.
    V. P. Smagin, N. S. Eremina, A. A. Isaeva, and Yu. V. Lyakhova, Inorg. Mater. 53, 263 (2017).CrossRefGoogle Scholar
  14. 14.
    Yu. Yu. Bacherikov, I. P. Vorona, S. V. Optasyuk, V. E. Rodionov, and A. A. Stadnik, Semiconductors 38, 987 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    N. Jing-hua, H. Rui-nian, L. Wen-lian, L. Ming-tao, and Y. Tian-Zhi, J. Phys. D: Appl. Phys. 39, 2357 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, Jr, S. Payne, W. Krupke, K.-T. Chen, and A. Burger, IEEE J. Quantum Electron. 33, 609 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    M. F. Bulanyi, A. V. Kovalenko, B. A. Polezhaev, and T. A. Prokofyev, Semiconductors 43, 716 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    K. A. Ogurtsov, V. V. Bakhmet’ev, A. M. Abyzov, M. N. Tsvetkova, and M. M. Sychev, Izv. SPbGTI (TU), No. 7, 13 (2010).Google Scholar
  19. 19.
    P. Mukherjee, C. M. Shade, A. M. Yingling, D. N. Lamont, D. H. Waldeck, and S. Petoud, J. Phys. Chem. A 115, 4031 (2011).CrossRefGoogle Scholar
  20. 20.
    P. Mukherjee, R. F. Sloan, C. M. Shade, D. H. Waldeck, and S. Petoud, J. Phys. Chem. C 117, 14451 (2013).CrossRefGoogle Scholar
  21. 21.
    M. A. Jafarov, E. F. Nasirov, and R. S. Jafarli, Inorg. Mater. 53, 39 (2017).CrossRefGoogle Scholar
  22. 22.
    H. Ehrlich, T. Shcherba, M. Zhilenko, and G. Lisichkin, Mater. Lett. 65, 107 (2011).CrossRefGoogle Scholar
  23. 23.
    N. G. Piven, L. P. Shcherbak, P. I. Feichuk, S. M. Kalitchuk, S. G. Krylyuk, and D. V. Korbutyak, Kondens. Sredy Mezhfaz. Granitsy 8, 315 (2006).Google Scholar
  24. 24.
    V. P. Smagin, A. A. Isaeva, N. S. Eremina, and A. A. Biryukov, Russ. J. Appl. Chem. 88, 1020 (2015).CrossRefGoogle Scholar
  25. 25.
    X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, Opt. Express 21, 8214 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    E. A. Romanov, Extended Abstract of Cand. Sci. Dissertation (Udmurt. State Univ., Izhevsk, 2011).Google Scholar
  27. 27.
    V. G. Klyuev, T. L. Maiorova, M. Fam Tkhi Khai, and V. N. Semenov, Kondens. Sredy Mezhfaz. Granitsy 11, 58 (2009).Google Scholar
  28. 28.
    N. K. Morozova, I. A. Karetnikov, D. A. Mideros, E. M. Gavrishchuk, and V. B. Ikonnikov, Semiconductors 40, 1155 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    N. K. Morozova, D. A. Mideros, V. G. Galstyan, and E. M. Gavrishchuk, Semiconductors 42, 1023 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Altai State UniversityBarnaulRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations